
Nationality Identification using Name

Wei Ren
weiren@stanford.edu

ZhenHuan Hong
jhong812@stanford.edu

Jiate Li
jiateli@stanford.edu

June 10, 2020

Abstract

For international students, it can be stressful to work with teammates who are all na-
tive speakers. On the other hand, working with fellow students speaking the same
primary language can make communication easier and promote team chemistry by
bonding outside the work (same cultural background). The motivation of this project
is to explore the viability of identifying a person’s nationality solely based on his/her
name using deep learning concept.
Keywords: Name; Nationality; Deep Learning; RNN.

1 Introduction

The goal of this project is to investigate the possibility of identifying a person’s nationality
solely based on his/her name. We explored two different deep learning approaches for the
problem:

• multinomial logistic regression using deep neural network

• Long Short Term Memory (LSTM) with character embeddings

We used multinomial logistic regression as our baseline model. By comparing the predic-
tion accuracy of the two models, we saw that the LSTM architecture performs significantly
better than the baseline model. From this understanding, we further explored the influence
of adding extra features to the architecture.

2 Dataset

The datasets we used were from GitHub (github.com/d4em0n/nationality-classify). The
original author crawled the name data from Wikipedia. Each dataset contains numerous
names of people coming from the same nationality. In total, there are 18 nationalities (Rus-
sia, China, Korea, Poland, Scotland, Italy, US/UK, France, Japan, Greece, Spanish, India,
Turkey, Indonesia, Vietnam, Czech Republic) with a total of 191736 names. Since the data
distribution (number of data entry per country) is close to uniform (each nationality con-
tains around 9800 names), there was no need to clean the datasets. Before proceeding to
data preprocessing, we combine all the datasets into one csv file with two columns of data.

1

weiren@stanford.edu
jhong812@stanford.edu
jiateli@stanford.edu


3 Methodology

3.1 Data preprocessing

For traditional natural language processing problem, the normal method is to divide an
example (sentence) into individual words and convert each word into a one-hot key vec-
tor and feed them into the model. For our problem, this is not feasible since each example
(name) only contains at most four words. In order to extract more information from a
name, we need to divide each name into characters. The n-gram language model as men-
tioned in Jinhyuk Lee et al’s paper proposes a solution. The general idea is to separate
individual words into n-gram (n depends on choice. in our case, n = 1,2,3) character se-
quences using sliding window fashion. We constructed the training corpus for the three
n-gram sequences (uni-gram: single character, bi-gram: two-character combination, tri-
character combination) based on our datasets. With these dictionaries, we can map each
name example to three distinct sequences.

3.2 Softmax Regression Model

For the softmax regression model, we can combine the three sequences into one input
vector and feed them into deep neural nets (NN). The final layer of the NN is a softmax
layer that can generate probabilities of each possible identification outcome (18 countries).
The loss function for the softmax layer is as followed:

L(ŷ, y) =

18∑
n=1

yi log ŷ

Where ŷ is the predicted nationality and y is the actual nationality.

The difficult part for implementing the traditional deep NN for the problem is that we
have to unify the length of the input. Since examples tend to have different lengths, their
n-gram sequences’ sizes also vary. To address the issue, we decided to pad each n-gram
vector with zeros to match their length with the maximum length we have in the datasets.
After the padding, for each example, we were able to concatenate the three n-gram vectors
and treat it as the input vector.

For the baseline model, we tuned several hyperparameters (Mini-batch size, number of
epochs, number of layers, number of units in each layer) to explore the best performer.

3.3 LSTM Model

For the LSTM model, we referenced Jinhyuk Lee et al’s work (github.com/jhyuklee/ethnicity-
tensorflow) as the starting point for our model architecture. The general idea is as fol-
lowed:

• Use char2vec approach (skip-grams algorithm) to find embeddings for every n-gram
character(s) we have in the training corpus.

• For each example, feed the three embedding sequences (unigram, bigram, trigram)
into three distinct one-layer LSTM models (many-to-one structure layer) respectively.

• Concatenate the three outputs from the LSTM layers and feed the result into a fully-
connected layer (FC) before putting the logits into the final softmax layer.

2



• The cost function is the same as what we used for the baseline model. The model is
trained with back propagation through time.

Figure 1 in the Appendix shows the workflow diagram of the model. It was taken from
Jinhyuk Lee et al’s paper.

Besides running the model architecture published by Jinhyuk Lee et al, we also tested the
influence of replacing the hidden fully-connected layer with attention layer on the overall
performance. Input feature wise, in addition to the three n-gram embeddings, we also
tried to add a quadgram embedding. Results from the model will be discussed in the next
section.

4 Results

We presented the results from the baseline model (softmax regression model), the LSTM
model, and the LSTM model with attention layer. For each model, we ran trials with
different hyperparameters to explore the best performer.

4.1 Baseline model results

For the softmax regression model, we ran 4 tests and the results are shown in Table 1. We
chose a learning rate of 0.0001 for all the trials.

Table 1: Baseline model result summary.

Trials Mini-batch
size

Number
of epochs

Number
of layers

Layer
dimensions

Training
accuracy

Testing accuracy

Trial 1 512 1500 5 100,80,50,30,18 0.58 0.55
Trial 2 1024 5000 5 100,80,50,30,18 0.63 0.60
Trial 3 1024 10000 5 100,80,50,30,18 0.51 0.46
Trial 4 1024 10000 6 300,150,80,50,30,18 0.81 0.66
Trial 5 1024 10000 6 150,100,80,50,30,18 0.81 0.69

The best performing trial is Trial 5. It uses a mini-batch size of 1024 and ran 10000 epochs.
The model has a total of 6 layers with 150, 100, 80, 50, 30, 18 units in each layer by order
(the last layer corresponds to the softmax layer). The best training and testing accuracy
achieved by the baseline model are 0.81 and 0.69 respectively.

4.2 LSTM model results

For the LSTM model, due to the fact that the model runs extremely slow (the original
authors wrote the architecture using Tensorflow 1.0.1), we were forced to truncate the input
data size by a factor of ten. Even then it took more than 20 minutes to run through 1 epoch.
Because of this limitation, we changed the number of epochs to be 30 for every trial run.
Table 2 summarizes some of the important hyperparameters we used for our model.

3



Table 2: Hyperparameter summary

Hyperparameters Value
Training Epoch 30
Mini-batch size 256
Learning rate 0.0035

Decay rate 0.09
Gradient Clipping [-5,5]

LSTM dropout probs 0.5
Hidden Layer dimension 200

Hidden layer dropout probs 0.5

Using the set hyperparameters, Loss for training, validation, and testing sets was calcu-
lated. Figure 2 in the Appendix shows the three learning curves for the model. Regarding
accuracy, training, validation, and testing top 1 accuracy (The actual nationality matches
the highest probability prediction) are 0.984, 0.802, and 0.832 respectively. To evaluate spe-
cific prediction performance, we generated a confusion matrix which is presented in the
Appendix (Figure 3)

Attention algorithm is a widely used method for machine translation for its ability to fo-
cus on part of text for every word translation. We tried to incorporate the algorithm into
the model, but the overall performance is not satisfying. The model ran normally for 10
epochs before the losses increase drastically (training loss goes from 0.446 to 77.579). For
the 10th epoch, the top 1 accuracy for training, validation, and testing are 0.872, 0.69, 0.717
respectively.

When adding a quadgram embedding feature to our input (one extra LSTM layer), the
model was able to run more epochs and achieved 0.999, 0.817, and 0.815 for training, val-
idation, and testing respectively. However, after training through 9 epochs, the accuracy
dropped dramatically. To compare two models with different n-gram feature, we attached
a performance table in the Appendix for reference (Table 3)

5 Analysis

Compared to the baseline model, the LSTM model performs much better (Using train-
ing and testing accuracy as our metrics). This is expected since recurrent neural network
(RNN) is known to have better performance in capturing features within sequence input.
Due to the limitation of our computing power, we could not run the model through more
iterations. Given the dataset and the current performance, it would be reasonable to es-
timate that the model can ultimately reach a testing accuracy higher than 90% with more
epochs (thousands of epochs). Something to note from Figure 2 is that the training loss
keeps decreasing while the validation and testing loss are increasing. This is common in
model training and we expect both losses to decrease after running more epochs.

Using the confusion matrix acquired from our test run, we found that this LSTM model
was good at recognizing vietnam names since its accuracy is 1. Chinese names had a very
high precision and recall as well. As for the Japanese name, its recall was 1, but precision
was below 1. Czech, English, and Polish names were confused with many other national-
ities’ names. It seems that English names were most confused with Scottish, French and
German names. In addition, quite a few Indian names were recognized as Arabic. Overall,

4



names from East Asia were easier to distinguish.

The application of attention layer is not very helpful for our purpose as it slows down the
model speed significantly and tends to incur gradient explosion. On the other hand, the
addition of quadgram embedding increases the computation cost and the performance is
relatively similar to the model without the additional embedding. However, we can see
some positive impacts brought by the additional feature. Referring to Table 3, the influence
of adding quadgram embedding is positive for most classes (increase of F1), except for
Chinese, Russian, and Turkish name. As for recall and precision values, in most cases,
adding quadgram embedding increases the model’s prediction accuracy. From the overall
record, we can clearly see that 4-gram model outperforms 3-gram model.

6 Discussion and Future Work

Overall, we can see that predicting a person’s nationality from his/her name is relatively
achievable using the model (if we can train the model through more epochs). From the
results, we saw that RNN network performs better than the traditional neural network in
dealing with sequence data. We concluded that attention mechanism might not be a good
algorithm for our application and adding additional n-gram embedding feature can im-
prove the model performance but at the cost of requiring more computing power.

Regarding future work, we should incorporate larger dataset with more countries to al-
low our model to fit wider range of users. In addition, we should consider using other
algorithms such as hierarchical RNNs (extract higher and more complex representation,
transformer.

7 Contribution

Wei Ren developed idea for quadgram and tuned the model, Jackie preprocessed the
dataset and drafted the majority of the report, Jiate Li developed idea for attention and
ran test trials.

8 Acknowledgement

Appreciate Professor Andrew Ng and Kian Katanforrosh for teaching this amazing course
and teaching assistant Jonathan Li for answering our questions and holding office hours.

5



9 Appendix

Figure 1: Workflow diagram for the RNN-LSTM model with character embedding

Figure 2: Learning curves for the LSTM model

6



Figure 3: Confusion matrix

Table 3: Name Nationality Classification Analysis

3-gram
model

4-gram
model

Count F1 Precision Recall Count F1 Precision Recall
Arabic 103 0.75 0.67 0.85 208 0.83 0.8 0.86

Chinese 83 0.99 0.99 0.99 167 0.97 0.95 0.99
Czech 122 0.69 0.81 0.61 197 0.78 0.76 0.79

English 206 0.55 0.61 0.51 387 0.64 0.64 0.64
French 95 0.66 0.62 0.71 219 0.74 0.81 0.68

German 84 0.66 0.55 0.83 184 0.72 0.71 0.73
Greece 105 0.94 0.97 0.9 179 0.94 0.92 0.97
India 103 0.45 0.51 0.4 178 0.6 0.77 0.49

Indonesia 123 0.72 0.82 0.65 197 0.75 0.72 0.78
Italian 108 0.84 0.75 0.94 202 0.94 0.93 0.95

Japanese 101 0.94 0.88 1 193 0.95 0.96 0.94
Korean 93 0.9 0.85 0.95 189 0.93 0.94 0.92
Polish 104 0.81 0.86 0.76 181 0.82 0.75 0.91

Russian 93 0.93 0.91 0.95 213 0.92 0.91 0.92
Scottish 93 0.6 0.72 0.52 203 0.77 0.67 0.9
Spanish 207 0.88 0.93 0.84 401 0.91 0.93 0.88
Turkish 105 0.71 0.62 0.83 178 0.69 0.84 0.58

Vietnamese 72 1 1 1 158 1 0.99 1
Overall 2000 0.767 0.777 0.771 3834 0.82 0.827 0.823

7



References

Jinhyuk Lee, M. K. D. C. J. C. J. K., Hyunjae Kim. (2017, August). Name nationality
classification with recurrent neural networks.. (Proceedings of the 26th
International Joint Conference on Artificial Intelligence)

Pucktada Treeratpituk, C. L. G. (2012). Name-ethnicity classification and
ethnicity-sensitive name matching.
(in AAAI)

Tomas Mikolov, K. C. G. S. C. J. D., Ilya Sutskever. (2013). Distributed representations of
words and phrases and their compositionality.. (in Advances in neural information
processing systems, pages 3111-3119)

Tomas Mikolov, L. B. J. C. S. K., Martin Karafiat. (2010). Recurrent neural network based
language model.. (In Inter-speech, volume 2, page 3, 2010)

Yoon Kim, D. S. A. M. R., Yacine Jernite. (2015). Character-aware neural language models.

8


	Introduction
	Dataset
	Methodology
	Data preprocessing
	Softmax Regression Model
	LSTM Model

	Results
	Baseline model results
	LSTM model results

	Analysis
	Discussion and Future Work
	Contribution
	Acknowledgement
	Appendix
	References

