

1

Question Answering for Long Texts
Alfred Wechselberger

alfredhw@stanford.edu

Rekha Kumar
rekha123@stanford.edu

Shreyas Vinayakumar
vshreyas@stanford.edu

Abstract

Answering questions from real world text is both an
important and a challenging problem with many
applications. State of the art Self-Attention based models
like Bert have been demonstrated to achieve good
performance on question answering benchmarks, but have
a high inference time, especially for longer texts. Our idea
to reduce the inference time is to add a selection stage that
processes chunks of a text and filters out candidates that
are less likely to contain answers, and feed only the
remaining portions to a self-attention based model. Our
results show that by adding a selection stage consisting of a
classifier based on a smaller model like DistilBert, we are
able to achieve significant improvement in the run time of
inference for long texts, without significantly sacrificing
accuracy

1. Related Work

Early approaches to Question Answering include
word2vec[7] and other approaches based on extracting
word embeddings. Subsequently, the Transformer[8], a
self-attention based model, was proposed for better
capturing the context of each word. Devlin et.al showed
state-of-the-art results on a wide variety of natural language
processing tasks using BERT[8], a model based on
Bidirectional Encoder Representations using Transformers.
This model can be pre-trained for a domain, and then
fine-tuned for specific tasks like Question Answering on
datasets like SQuAD v1.1.

One of the challenges with using pre-trained models relying
on Self-Attention is that although it takes relatively less
time to fine-tune them for specific domain datasets, the
inference time is still fairly high. In fact the best models
have time complexity that is quadratic in the token
sequence length being considered.

For production systems inference time is a critical
requirement to be able to serve customers. We wish to
explore this area of improving the time for inference, while
keeping the F1 score mostly intact. Prior approaches to
solving this problem focused on knowledge distillation,
quantization and network pruning to create simpler models
that run faster[10, 11, 12] . One drawback is that these

models are not as good at generalizing to different datasets
and also significantly sacrifice accuracy when optimized
for very low inference times.

We believe our work to be complementary to the
aforementioned techniques. Our approach was inspired by
related work on related to coarse-grained and fine-grained
classifiers[2, 3]. The previous works focused on improving
the question answering performance, as contrasted with the
inference time.

2. Dataset and Features

We are using a subset of the Kaggle dataset for the
Tensorflow 2.0 Question Answering competition, which is
itself derived from the Google Natural Questions dataset.
Each sample contains a Wikipedia article, and a related
question. The training examples also provide the correct
long and short form answer or yes/no answers for the
sample, if any exist. For each article and question pair, the
expectation is to predict or select long and short form
answers to the question drawn directly from the article.

2.1. Data Distribution

Within the training dataset, we had the following
distribution:
Number of questions: 10,000
Average Answer Candidate Count per Question: 124
Average Answer Candidate Count: 324
Average Answer Candidate Length: 60
Max Candidate Length: 70,751
Percent of questions with no answer: 27%

3. Methods

3.1. Baseline Model

The baseline was established taking the Bert
“base-uncased” model with linear output layer for question
answering, and fine-tuning it on our dataset. The model has
12 repeating layer, 128 embedding, 4096-hidden, 64-heads
and 223M parameters. The maximum sequence length
handled by this model is 384 tokens. A sliding window of
128 tokens was used to ensure no missing answers. The

2

time it took for fine-tuning the above model was 6.7hrs on
an AWS p2.xlarge instance.

3.2. Selected approach

At a high-level, the approach is to use a Selection Stage (i.e.
classifier) to filter out candidates which do not contain the
answer and then feeding the remaining candidates to the
BERT model fine-tuned for QA on our dataset, to improve
the overall inference time. It is our hypothesis that
optimizing the Selection Stage for recall would potentially
reduce the total inference time by passing on fewer
candidates to the span prediction stage.

Figure 1. Architecture

The classifier must have better recall than the BERT
fine-tuned model, while also having a sufficiently low
inference time to offset the inclusion of an additional
model. More specifically, text portions which are passed
through have increased inference time since they are
evaluated by both of the models of the models, however
text portions which are not passed through have decreased
inference time since they are evaluated only by the coarse
model.

We use DistilBERT fine-tuned as a classifier model
because we hypothesize that the classifier needs to have a
fair understanding of the language, and yet be simpler than
BERT in order to perform the inference faster.

4. Implementation
We obtained a baseline model code from Kaggle
competition starter code[17]. We modified this code to add
a selection stage using DistilBERT model as a classifier.
The models have 6 hidden layers with 3072 units. The
output layer is a fully connected linear layer which takes
the 768 outputs of the hidden layer and predicts one “No
Answer” and some “Has Answer” labels(Yes or No
questions which do not have a corresponding span are
treated as “Has Answer”). We trained the classifier for 2
epochs on an AWS p2.xlarge instance. The machine has an
Intel x5 4 core processor, 61 GB of RAM and an NVIDIA
Tesla K80 GPU with 12GB of RAM. We used the same
machine for both training and inference. Training time for
2 epochs was around 1.2hrs.

5. Results

Table 1. Selection Stage – Recall & Precision of top
models

Parameters
Weight of “No
Answer”, dropout,
initial LR, LR
scheduler, gradient
clipping

Validation set
Precision

Validation set
Recall

 0.3, 0.1, 2e-5
LRReduceonPlateau,
30

0.5306 0.9811

0.35, 0.1, 1e-6
WarmupLinearSchedul
er, ∞

0.5385 0.9246

0.29, 0.1, 1e-6
WarmupLinearSchedul
er, ∞

0.4724 0.9932

Since most of the sections of the dataset did not contain the
answer, this skewed the dataset for the classifier heavily
towards negative examples. Instead of artificially
augmenting the dataset with constructed positive examples,
we chose to adjust the weighting on the “No answer” class
to increase the recall. 0.3 was chosen as the weight in order
to have a good recall and reasonable precision.

3

For the training, we used Adam with weighted decay as the
optimizer. We also changed the learning rate scheduler to
reduce it when the loss did not decrease for more than 1
iteration, since the loss appeared to oscillate initially.
Hyperparameters such as weight decay rate, momentum
term appeared to have little effect on the convergence.

At this point we experimented with different values of the
Dropout Probability, since the model appeared to be
overfitting the training set. The best score on validation set
was achieved with dropout value = 0.1.

Table 2. Inference Results

Model #Train
samples

F1
score

Prec. Recall

BERT
Baseline

5,000 0.8220 0.7708 0.8809

DistilBert
model 1 +
BERT

DistilBert
10,000
Bert 5000

0.5428 0.5588 0.5277

DistilBert
model 2 +
BERT

DistilBert
10,000
Bert 5,000

0.5743 0.6041 0.5471

DistilBert
model 3 +
BERT

DistilBert
10,000
Bert 5,000

0.6734 0.5892 0.7857

Model Total Eval
time/sample,
avg over 100
documents

Eval
time in
classifier
stage per
sample

% document
text filtered
out by
classifier

BERT
Baseline

5.76 s

N/A N/A

DistilBert
model 1 +
BERT

2.34 s 2.03 s 70.1%

DistilBert
model 2 +
BERT

2.74 s 2.14s 49.9%

DistilBert
model 3 +
BERT

3.96 s 2.03s 30.6%

5.1. Analyzing the inference time of the system

We estimated the inference time of the system as shown in
Figure 1 by the following formula:

T = nforward (tselection + tspan) + nreject tselection

T = Total Inference Time, nforward = Total number
of positives predicted by selection stage
nreject = Total number of negatives predicted,
tselection = DistilBERT(selection stage model)
inference time, tselection = BERT fine-tuned
inference time

In the above formula, for our setup, tselection is almost
constant for the given sequence length and number of
hidden layers used. The variable term is the percentage of
examples forwarded which directly relates to the precision
of the tuned classifier. For a given amount of training
effort, there is an upper bound on how much the classifier
can achieve in terms of precision without hurting the recall,
which can be seen from the results in Table 1.

One thing to note is that there is a tradeoff in terms of
memory usage on the GPU by the Selection Stage model
which could potentially limit the batch size for the Span
Prediction stage model, thereby increasing the total
inference time. The DistilBERT model that we picked is
fairly small (~255 MB), while the BERT model is much
larger (~1.2 GB), and is further dwarfed by the data itself.
Therefore this effect does not appear to be significant in
our implementation.

6. Conclusion and Future work
Our preliminary results are encouraging since the total
inference time has decreased by 40%, although the F1 score
of the combined model is slightly lower. The training loss
continued to decrease for larger training sets, and more
epochs as seen in Figure 2, which indicates that the F-1
score for the classifier can be improved with more training
resources. The training time for DistilBert is also fairly low,
which could make it a worthwhile investment.

For the Selection stage we would like to compare our
performance with that of a naive classifier based on, say,
cosine similarity between word embeddings of the question
and the text portion. Although this classifier would
probably not be very accurate, and would either be too
aggressive or too conservative in rejecting portions, it
would be interesting to see the effect on total running time
on the system as it would be cheaper to run than DistilBert.

4

It would also be interesting to explore different simpler
architectures for the classifier like BiLSTM, and apply
Teacher-student training to see if they can be made accurate
enough for our task[1].

We would also like to compare our result to just using a
single stage with different techniques to speed up the
inference: using fewer hidden layers of BERT, using
pruned versions, increasing the sliding window stride at the
cost of missing some answers, and reducing the floating
point precision.

7. Contributions
Shreyas suggested the proposal for reducing inference time
by selecting a subset of the text, conducted a literature
survey of the area, developed the end-to-end pipeline
combining selection and span prediction, created a
framework for training the classifier and the QA model
using different hyperparameters and setup the AWS
infrastructure to host the project. Shreyas co-ordinated as
well as carried out several experiments for hyperparameter
tuning to get a better F-1 score. Shreyas’s cousin Sukrit
Ganesh also voluntarily contributed by writing scripts to
transform the dataset and to collect some statistics on the
dataset.

Rekha worked on Jupyter notebook setup, developed most
of the baseline code, prototyped the selection stage
classifier using Distilbert, made several code changes for
running experiments faster, hyper parameter tuning,
contributed to milestone reports and final report and
presentation. Rekha suggested Question Answering as a
topic and found a good dataset to use. Rekha helped
develop the evaluation score for the classifier and fixed
several bugs in the end-to-end pipeline.

Alfred suggested and documented the overall structure of
the solution based on the literature review, led the setup of
the local and remote development environments. Alfred
also helped with locating and downloading some of the
dataset files, with moving the larger files to server, and with
performing some initial analysis on the dataset since it was
large. Alfred also helped profile the classifier code and
made a few enhancements for it to execute more quickly.
Alfred also setup his local machine for training the models
on more training data and performed multiple runs in order
to conserve budget on AWS. Alfred also performed the
initial review of the Milestone #2, and general Final Report
formatting.

8. References

1. Tang et al. “Distilling Task-Specific Knowledge
from BERT into Simple Neural Networks”
https://arxiv.org/abs/1903.12136

2. Zhang et al. “Retrospective Reader for Machine
Reading Comprehension”
https://arxiv.org/abs/2001.09694

3. Choi et al. “Coarse-to-Fine Question Answering for
Long Texts” teaches a hierarchical question
answering similar to how people skim texts.
https://www.aclweb.org/anthology/P17-1020.pdf

4. Kitaev et al. “Reformer: The Efficient
Transformer” teaches a transformer using
locality-sensitive hashing attention to efficiently
handle long sequences with small memory.
https://arxiv.org/abs/2001.04451

5. Le et al. “Distributed Representations of Sentences
and Texts” teaches learning a fixed paragraph
vector from a variable length of text
https://arxiv.org/abs/1405.4053

6. Liu et al. “Text Summarization with Pretrained
Encoders”
https://arxiv.org/abs/1908.08345

7. Efficient Estimation of Word Representations in
Vector Space by T Mikolov - 2013
https://arxiv.org/abs/1301.3781

8. Attention is All you Need by A Vaswani - 2016
https://www.aclweb.org/anthology/P17-1020.pdf

9. Devlin et al. “BERT: Pre-training of Deep
Bidirectional Transformers for Language
Understanding”
https://arxiv.org/abs/1810.04805

10. Lan, et al. “ALBERT: A Lite BERT for
Self-supervised Learning”
https://arxiv.org/abs/1909.11942

11. Liu, et al. “RoBERTa: A Robustly Optimized
BERT Pretraining Approach”
https://arxiv.org/abs/1907.11692

12. O Zafrir, “Q8BERT: Quantized 8Bit BERT”
https://arxiv.org/abs/1910.06188

13. “tf-idf”. Wikipedia
https://en.wikipedia.org/wiki/Tf%E2%80%93idf

14. Huggingface models for BERT and DistilBERT
https://huggingface.co/transformers/

15. “TensorFlow 2.0 Question Answering”. Kaggle
https://www.kaggle.com/c/tensorflow2-question-

answering
16. Code reference -

https://www.kaggle.com/sakami/tfqa-pytorch-bas
eline

