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Abstract 

Answering questions from real world text is both an 
important and a challenging problem with many 
applications. State of the art Self-Attention based models 
like Bert have been demonstrated to achieve good 
performance on question answering benchmarks, but have 
a high inference time, especially for longer texts. Our idea 
to reduce the inference time is to add a selection stage that 
processes chunks of a text and filters out candidates that 
are less likely to contain answers, and feed only the 
remaining portions to a self-attention based model. Our 
results show that by adding a selection stage consisting of a 
classifier based on a smaller model like DistilBert, we are 
able to achieve significant improvement in the run time of 
inference for long texts, without significantly sacrificing 
accuracy 

1. Related Work 

Early approaches to Question Answering include 
word2vec[7] and other approaches based on extracting 
word embeddings. Subsequently, the Transformer[8], a 
self-attention based model, was proposed for better 
capturing the context of each word.  Devlin et.al showed 
state-of-the-art results on a wide variety of natural language 
processing tasks using BERT[8],  a model based on 
Bidirectional Encoder Representations using Transformers. 
This model can be pre-trained for a domain, and then 
fine-tuned for specific tasks like Question Answering on 
datasets like SQuAD v1.1.  

One of the challenges with using pre-trained models relying 
on Self-Attention is that although it takes relatively less 
time to fine-tune them for specific domain datasets, the 
inference time is still fairly high. In fact the best models 
have time complexity that is quadratic in the token 
sequence length being considered. 

For production systems inference time is a critical 
requirement to be able to serve customers. We wish to 
explore this area of improving the time for inference, while 
keeping the F1 score mostly intact. Prior approaches to 
solving this problem focused on knowledge distillation, 
quantization and network pruning to create simpler models 
that run faster[10, 11, 12] . One drawback is that these 

models are not as good at generalizing to different datasets 
and also significantly sacrifice accuracy when optimized 
for very low inference times. 
 
We believe our work to be complementary to the 
aforementioned techniques. Our approach was inspired by 
related work on related to coarse-grained and fine-grained 
classifiers[2, 3].  The previous works focused on improving 
the question answering performance, as contrasted with the 
inference time. 
 

2. Dataset and Features 

We are using a subset of the Kaggle dataset for the 
Tensorflow 2.0 Question Answering competition, which is 
itself derived from the Google Natural Questions dataset. 
Each sample contains a Wikipedia article, and a related 
question. The training examples also provide the correct 
long and short form answer or yes/no answers for the 
sample, if any exist. For each article and question pair, the 
expectation is to predict or select long and short form 
answers to the question drawn directly from the article.  

2.1. Data Distribution 

Within the training dataset, we had the following 
distribution: 
Number of questions: 10,000 
Average Answer Candidate Count per Question:  124 
Average Answer Candidate Count:  324 
Average Answer Candidate Length:  60 
Max Candidate Length:  70,751 
Percent of questions with no answer: 27% 

3. Methods 

3.1. Baseline Model 

The baseline was established taking the Bert 
“base-uncased” model with linear output layer for question 
answering, and fine-tuning it on our dataset. The model has 
12 repeating layer, 128 embedding, 4096-hidden, 64-heads 
and 223M parameters. The maximum sequence length 
handled by this model is 384 tokens. A sliding window of 
128 tokens was used to ensure no missing answers. The 
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time it took for fine-tuning the above model was 6.7hrs on 
an AWS p2.xlarge instance.  

3.2. Selected approach 

At a high-level, the approach is to use a Selection Stage (i.e. 
classifier) to filter out candidates  which do not contain the 
answer and then feeding the remaining candidates to the 
BERT model fine-tuned for QA on our dataset, to improve 
the overall inference time.  It is our hypothesis that 
optimizing the Selection Stage for recall would potentially 
reduce the total inference time by passing on fewer 
candidates to the span prediction stage.   
 
Figure 1.  Architecture 

 
The classifier must have better recall than the BERT 
fine-tuned model, while also having a sufficiently low 
inference time to offset the inclusion of an additional 
model.  More specifically, text portions which are passed 
through have increased inference time since they are 
evaluated by both of the models of the models, however 
text portions which are not passed through have decreased 
inference time since they are evaluated only by the coarse 
model. 
 
We use DistilBERT fine-tuned as a classifier model 
because we hypothesize that the classifier needs to have a 
fair understanding of the language, and yet be simpler than 
BERT in order to perform the inference faster. 

4. Implementation 
We obtained a baseline model code from Kaggle 
competition starter code[17].  We modified this code to add 
a selection stage using DistilBERT model as a classifier. 
The models have 6 hidden layers with 3072 units. The 
output layer is a fully connected linear layer which takes 
the 768 outputs of the hidden layer and predicts one “No 
Answer” and some “Has Answer” labels(Yes or No 
questions which do not have a corresponding span are 
treated as “Has Answer”).  We trained the classifier for 2 
epochs on an AWS p2.xlarge instance. The machine has an 
Intel x5 4 core processor, 61 GB of RAM and an NVIDIA 
Tesla K80 GPU with 12GB of RAM.  We used the same 
machine for both training and inference.  Training time for 
2 epochs was around 1.2hrs. 
 
 

 
 
 
 

5. Results 
 
Table 1. Selection Stage – Recall & Precision of top 
models 
 

Parameters  
Weight of “No 
Answer”, dropout,  
initial LR, LR 
scheduler, gradient 
clipping 

 

Validation set 
Precision 

Validation set 
Recall 

 0.3, 0.1, 2e-5 
LRReduceonPlateau, 
30 

0.5306 0.9811 

0.35, 0.1, 1e-6 
WarmupLinearSchedul
er, ∞ 

0.5385 0.9246 

0.29, 0.1, 1e-6 
WarmupLinearSchedul
er, ∞ 

0.4724 0.9932 

 
 
 
 
 
 

 
 
 
Since most of the sections of the dataset did not contain the 
answer, this skewed the dataset for the classifier heavily 
towards negative examples. Instead of artificially 
augmenting the dataset with constructed positive examples, 
we chose to adjust the weighting on the “No answer” class 
to increase the recall. 0.3 was chosen as the weight in order 
to have a good recall and reasonable precision. 
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For the training, we used Adam with weighted decay as the 
optimizer. We also changed the learning rate scheduler to 
reduce it when the loss did not decrease for more than 1 
iteration, since the loss appeared to oscillate initially. 
Hyperparameters such as weight decay rate, momentum 
term appeared to have little effect on the convergence. 
 
At this point we experimented with different values of the 
Dropout Probability, since the model appeared to be 
overfitting the training set. The best score on validation set 
was achieved with dropout value = 0.1. 
 
Table 2. Inference Results 

Model #Train 
samples 

F1 
score 

Prec. Recall 

BERT 
Baseline 

5,000 0.8220 0.7708 0.8809 

DistilBert 
model 1 + 
BERT 

DistilBert 
10,000 
Bert 5000 

0.5428 0.5588 0.5277 

DistilBert 
model 2 + 
BERT 

DistilBert 
10,000 
Bert 5,000 

0.5743 0.6041 0.5471 

DistilBert 
model 3 + 
BERT 

DistilBert 
10,000 
Bert 5,000 

0.6734 0.5892 0.7857 

 
 

Model Total Eval 
time/sample, 
avg over 100 
documents 
 

Eval 
time in 
classifier 
stage per 
sample 

% document 
text filtered 
out by 
classifier 

BERT 
Baseline 

5.76 s 
 

N/A N/A 

DistilBert 
model 1 + 
BERT 

2.34 s 2.03 s 70.1% 

DistilBert 
model 2 + 
BERT 

2.74 s 2.14s 49.9% 

DistilBert 
model 3 + 
BERT 

3.96 s 2.03s 30.6% 

 

5.1. Analyzing the inference time of the system 

We estimated the inference time of the system as shown in 
Figure 1 by the following formula:  
  
T = nforward (tselection + tspan) + nreject tselection 
 
T = Total Inference Time, nforward = Total number 
of positives predicted by selection stage 
nreject = Total number of negatives predicted, 
tselection = DistilBERT(selection stage model) 
inference time, tselection = BERT fine-tuned 
inference time 
 
In the above formula, for our setup, tselection is almost 
constant for the given sequence length and number of 
hidden layers used. The variable term is the percentage of 
examples forwarded which directly relates to the precision 
of the tuned classifier. For a given amount of training 
effort, there is an upper bound on how much the classifier 
can achieve in terms of precision without hurting the recall, 
which can be seen from the results in Table 1. 
 
One thing to note is that there is a tradeoff in terms of 
memory usage on the GPU by the Selection Stage model 
which could potentially limit the batch size for the Span 
Prediction stage model, thereby increasing the total 
inference time.  The DistilBERT model that we picked is 
fairly small (~255 MB), while the BERT model is much 
larger (~1.2 GB), and is further dwarfed by the data itself.  
Therefore this effect does not appear to be significant  in 
our implementation. 

6. Conclusion and Future work 
Our preliminary results are encouraging since the total 
inference time has decreased by 40%, although the F1 score 
of the combined model is slightly lower. The training loss 
continued to decrease for larger training sets, and more 
epochs as seen in Figure 2, which indicates that the F-1 
score for the classifier can be improved with more training 
resources. The training time for DistilBert is also fairly low, 
which could make it a worthwhile investment. 
 
For the Selection stage we would like to compare our 
performance with that of a naive classifier based on, say, 
cosine similarity between word embeddings of the question 
and the text portion. Although this classifier would 
probably not be very accurate, and would either be too 
aggressive or too conservative in rejecting portions, it 
would be interesting to see the effect on total running time 
on the system as it would be cheaper to run than DistilBert. 
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It would also be interesting to explore different simpler 
architectures for the classifier like BiLSTM, and apply 
Teacher-student training to see if they can be made accurate 
enough for our task[1].   
 
We would also like to compare our result to just using a 
single stage with different techniques to speed up the 
inference: using fewer hidden layers of BERT, using 
pruned versions, increasing the sliding window stride at the 
cost of missing some answers, and reducing the floating 
point precision. 
 

7. Contributions 
Shreyas suggested the proposal for reducing inference time 
by selecting a subset of the text, conducted a literature 
survey of the area, developed the end-to-end pipeline 
combining selection and span prediction, created a 
framework for training the classifier and the QA model 
using different hyperparameters and setup the AWS 
infrastructure to host the project. Shreyas co-ordinated as 
well as carried out several experiments for hyperparameter 
tuning to get a better F-1 score. Shreyas’s cousin Sukrit 
Ganesh also voluntarily contributed by writing scripts to 
transform the dataset and to collect some statistics on the 
dataset. 

Rekha worked on Jupyter notebook setup, developed most 
of the baseline code, prototyped the selection stage 
classifier using Distilbert, made several code changes for 
running experiments faster, hyper parameter tuning, 
contributed to milestone reports and final report and 
presentation. Rekha suggested Question Answering as a 
topic and found a good dataset to use. Rekha helped 
develop the evaluation score for the classifier and fixed 
several bugs in the end-to-end pipeline. 

Alfred suggested and documented the overall structure of 
the solution based on the literature review, led the setup of 
the local and remote development environments. Alfred 
also helped with locating and downloading some of the 
dataset files, with moving the larger files to server, and with 
performing some initial analysis on the dataset since it was 
large.  Alfred also helped profile the classifier code and 
made a few enhancements for it to execute more quickly.  
Alfred also setup his local machine for training the models 
on more training data and performed multiple runs in order 
to conserve budget on AWS.  Alfred also performed the 
initial review of the Milestone #2, and general Final Report 
formatting. 
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