
SU-chef: The hands-free kitchen helper
Natural Language Processing

CS230 Project Final Paper
Stephanie Schneider, schneids

For this project, I created a solution to a problem that I, and I imagine many other
people, have had while cooking: your hands are wet or dirty, and you just need to know
the next step of a recipe. These days, most everyone accesses recipes on their phone
or computer, and it seems like the screen always times out right when you’re ready to
look for the next ingredient. Instead of wiping your hands off to enter a password or
swipe a fingerprint, what if you could just ask your device, for example, “how many cups
of sugar do I add?” or “I just mixed the dry ingredients, what’s next?” - and it gave a
response! Even if you are an effortlessly tidy chef, we’ve all struggled with scrolling past
endless life stories on a blog page just to get to the recipe. My project helps to eliminate
all annoying practicalities of using online recipes; the user can simply upload a
webpage, and begin asking their electronic sous-chef for everything else.

Using existing speech-to-text and text-to-speech implementations, the only missing
ingredient in this operation is interpreting the question, and scanning the webpage for
the answer. Deep learning has already been proven successful for similar reading
comprehension tasks (see CS224N lecture on deep learning for NLP). I am using the
Stanford Question-Answer Dataset (SQuAD) v1.1, which excels in teaching networks
“extractive question-answering,” in conjunction with the RecipeQA dataset, which
focuses on question-answering in the context of online recipes. In the type of NLP
exemplified by SQuAD, the final result provides answers composed of a subsequence
of the passage, rather than counting or yes/no type answers. This is the exact type of
question-answer needed for my application.

Modeling and Implementation

I used the SQuAD v1.1 dataset, which includes 100,000+ questions with extracted
answers. I chose not to use the updated SQuAD v2.0 (adds 50,000+ questions where
the answer does not appear in the passage) in order to simplify the problem, but also to
make the SQuAD dataset more similar to the multiple-choice structure of RecipeQA,
where an answer always exists in the passage [1,2].

I used a QANet deep network structure for my baseline. The QANet architecture uses
convolution and self-attention to model local and global details, respectively. By using
these techniques in conjunction, this implementation avoids the reliance on RNNs,
which tend to greatly increase both training and prediction time. QANet takes in two sets
of words, a context paragraph and a question, and outputs a span, which in this case is
a direct subset of the original context. The SQuAD dataset is already formatted in a
compatible way; I acquired both SQuAD and QANet from
https://github.com/NLPLearn/QANet​ [4].

The basic structure of QANet follows nearly all existing reading comprehension models
with a five-layer system: an input embedding layer, an embedding encoder layer, a
query-to-context attention layer, an encoder layer, and an output layer. The novel
difference in this model is its use of convolution and self-attention in the embedding and
encoder layers, instead of RNNs. The specifics of the model can be read about in [4].

For Milestone 2, I introduced a novel dataset. The RecipeQA dataset is published in a
different format than SQuAD, so some work needed to be done in order to merge the
two. In particular, I deconstructed the multiple-choice, fill-in-the-blank format of
RecipeQA to coalesce with open-ended SQuAD queries. Additionally, the RecipeQA
examples include multimedia questions (e.g. using pictures of different stages of the
recipe), which were filtered out.

The combined training dataset was constructed by adding the filtered RecipeQA train
questions to the SQuAD train questions. Since my application deals exclusively with
recipe data, I used only samples from RecipeQA for the dev and test sets (this deviates
from my method in Milestone 2). It is important to note that while the training dataset
differs, the dev and test set still come from the same distribution; this ensures that the
model is built to hit the same target we care about in testing (recipe-specific questions),
as taught in the “Structuring Machine Learning Projects” Coursera course.

The second significant change to the dataset since Milestone 2 deals with RecipeQA
inference answers that aren’t strictly extractive spans of the context paragraph.
Previously, I had been eliminating all such questions. However, this resulted in
RecipeQA questions only making up about 2% of the combined training dataset (~2000
questions from RecipeQA and 100,000+ from SQuAD). My solution for these
non-extractive questions was to use common substrings between the RecipeQA
multiple-choice answer and the context paragraph as the extractive span.
I tested several different heuristic approaches to determine if the resulting overlap was
of significance, such as total string length and length of individual words within the

https://github.com/NLPLearn/QANet

string. All dataset modifications are implemented in the file ​parse_json.py​ in the
submitted code.

Results

After exploring several hyperparameter choices (e.g. dropout rate, learning rate, and
batch size), I found that the parameters for QANet in [4] were slightly superior, but more
often the difference was insignificant. This makes intuitive sense: since SQuAD makes
up the vast majority of the training set, and the RecipeQA questions have been modified
specifically to match the format of SQuAD, we expect the hyperparameter tuning of
QANet to be optimal for this dataset as well.

My iterative approach imposed overall time constraints, so I decreased the number of
steps by a factor of ten (60000 to 6000). This will reduce overall accuracy, but still works
to compare the architecture’s performance on datasets constructed using different
heuristics; in this sense, the comparative analysis is still meaningful. I evaluate the
performance of the model using an exact match as well as F1 metric, which is what is
used for the SQuAD leaderboard. By using F1, the evaluation strategy can ignore
deviations in exact responses (e.g. “three,” “three cups,” and “three cups of sugar” could
all be acceptable responses).

The datasets are defined by their RecipeQA heuristics.

● RecipeQA extractive​: include only RecipeQA questions if the answer is an
explicit span of the context paragraph

● RecipeQA 5-char span​: includes RecipeQA extractive questions, plus questions
whose answers had at least five-character common substrings with the context
paragraph; use this substring as the answer

● RecipeQA 12-char span​: includes RecipeQA extractive questions, plus questions
whose answers had at least twelve-character common substrings with the
context paragraph, stripping spaces and ignoring single-letter cut-off words (e.g.
“d baking soda ” →“baking soda”). Use this substring as the answer.

● RecipeQA significant words​: includes RecipeQA extractive questions, plus
questions whose answers shared a single word of at least eight characters. Use
this single word as the answer.

Table 1 below shows the QANet performance for SQuAD data, both alone and including
extractive RecipeQA questions, for reference.

Table 1: Reference performance on SQuAD data

Train Dataset Dev/Test Dataset Exact match F1

SQuAD only SQuAD only 7.71% 17.35%

87599 questions 10570 questions (dev=test)

Combined (SQuAD +
RecipeQA extractive)

Combined (SQuAD + RecipeQA
extractive)

7.64% 17.15%

89062 questions 10770 / 10766 questions

Since the QANet was optimized for the SQuAD testset, we need to isolate the test
cases we care about, namely extractive recipe questions. The results in Table 2 show
the results for training this network on several different versions of the novel SQuAD +
RecipeQA dataset. All versions incorporated SQuAD questions in training, and used
RecipeQA extractive dev and test sets, with 200 and 196 questions each, respectively.

Table 2: Performance for different training sets on RecipeQA extractive data

Train Dataset (+ SQuAD) Number of QA pairs Exact match F1

RecipeQA extractive 89062 0% 3.5%

RecipeQA 5-char 94327 0.58% 1.59%

RecipeQA 12-char 90225 0.58% 3.36%

RecipeQA significant words 91078 0% 1.21%

These results suggest that none of the proposed heuristics improved upon a smaller
and more specialized training set, though a modified 12-character overlap came the
closest.

Conclusion

In order to encourage better performance on the combined SQuAD + RecipeQA
dataset, I attempted to supplement the training set with examples representative of
RecipeQA. The combined dataset draws roughly 2000 extractive questions from
RecipeQA, but nearly 8000 more are being filtered out for the answers not being proper
spans of the context paragraph. If we utilize these questions, the RecipeQA

representation jumps to 9% of the combined dataset. However, this project revealed
that it is more valuable to have a smaller training set that is a better representation of
the test data.

It’s interesting that adding more samples ​decreased​ the accuracy of the predictions. In
particular, I expected the “significant word” heuristic to improve upon extractive-only
questions, but perhaps by just using words of a certain length, instead of language
insight from CoreNLP or GloVe, this method effectively untrained the model to
recognize significant words within a span.

The main takeaway from this project is the value of a good dataset. In future work (I still
want to use this app), I will look into auto-generating more questions from each context
paragraph in RecipeQA (as per SQuAD), or even auto-generating queries and answers
from independent online recipes.

References

[1] Rajpurkar, Pranav, Robin Jia, and Percy Liang. "Know what you don't know:
Unanswerable questions for SQuAD." arXiv preprint arXiv:1806.03822 (2018).
[2] Rajpurkar, Pranav, et al. "Squad: 100,000+ questions for machine comprehension of
text." arXiv preprint arXiv:1606.05250 (2016).
[3] Clark, Christopher, and Matt Gardner. "Simple and effective multi-paragraph reading
comprehension." arXiv preprint arXiv:1710.10723 (2017).
[4] Yu, Adams Wei, et al. "Qanet: Combining local convolution with global self-attention
for reading comprehension." arXiv preprint arXiv:1804.09541 (2018).

