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1 Abstract

In this work, we leverage a deep learning pipeline for training a network to improve the resolution of
MRI images, leading to shorter image acquisition times. Using a Generative Adversarial Network,
we extend previous approaches and focus specifically on super-resolution of the MRIs of pediatric
patients, which tend to have more artifacts. While our results show promise, further research into
solving vanishing gradients and decreasing pixelation is needed.

2 Introduction

High-resolution magnetic resonance images (MRI) are vital in diagnosing numerous conditions,
including brain tumors, traumatic brain injuries, developmental anomalies, strokes, dementia, and
infections and are preferred in diagnosis due to its diverse range of applications and low risk posed to
the patient [4]. However, a typical scan requires patients to be in the scanner for prolonged periods of
time (up to 60-90 minutes). Faster image acquisition could dramatically drive down the amount of
time the patient has to be still in the scanner and could help create a better patient experience and
cut down the amount of noise from the slight movements of the patient. This is especially true of
pediatric patients who tend to be less able to stay still for these extended periods. Thus, our project
focuses on MRI super-resolution of pediatric patients specifically. We chose to pursue this project
because we all have interests in leveraging algorithms to improve healthcare.

This paper provides a pathway for faster image acquisition, followed by reconstruction of the low
resolution images into higher resolution ones that can expedite clinical diagnoses. By using a
Generative Adversarial Network (GAN), we transform an input of a low-resolution MRI image
to a higher-resolution MRI image. Uniquely, our project chooses to focus on improving temporal
resolution in pediatric patients, two factors that are not commonly seen in the field of medical image
super-resolution.

3 Related work

Research on image super-resolution, specifically in the realm of medicine, has exploded in the
last couple of years, with CNNs and SRGANs primarily used to improve image super-resolution.
Additional architectures commonly used to tackle this problem include ResNets, U-Nets, and en-
semble learning (or a combination of the former). However, in our literature search, we did not
find a model that catered specifically to pediatric patients, which is the novelty of our project. For
instance, Ghodrati et al. found very promising results using CNNs with ResNet that was comparable
to U-Nets, despite requiring less than 10% of the number of parameters needed for the ResNet
[5]. However, the number of parameters needed for both ResNets and U-Nets is extremely large
(100,000 parameters and 1.3 million parameters respectively). The other approach considered more
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state-of-the-art involves using super-resolution GANs (SRGANs). Since Ledig et al published their
photo-realistic image super-resolution paper [6], using SRGANs has become state-of-the-art in the
medical domain. After reading papers such as Chen et al, Lyu et al, and Wang et al that achieved
impressive results on MRI superresolution of scans inspired by Ledig et al’s technique, we decided to
use this approach of using an SRGAN [7, 8, 9].

It is also important to note that due to the difficulty in acquiring patient data that medical datasets
tend to be a lot smaller than datasets for similar tasks in other domains. Past literature supports that a
GAN would be better for smaller datasets [10].

4 Dataset and Features

Courtesy of the Stanford School of Medicine and the Laboratory of Quantitative Imaging and Artificial
Intelligence, we are utilizing a dataset of 10 patients, each with about 1,300 full-body high-resolution
MRI slices. A slice, in this case, is a DICOM image of size 512x512, at 72 ppi resolution, that begins
at the top of the head and scans the entire body. Because the dataset was provided to us from Stanford
University Neuroscience researchers, we do not posses information about the backgrounds of these
patients. We were also given another dataset of 10 patients, each with about 1,300 low-resolution
slices of a 3D fMRI scan of the patient’s brain. However, because this specific dataset only contained
low-resolution images and for the purposes of our research we required the paired high-resolution
images, we were unable to use this dataset to train our model.

Instead, we used a scaling function to create our low resolution images, resizing the images to be
256x256 instead of 512x512 (so scaling down by a factor of 1/2). It’s difficult to provide other
quantitative data (exploratory data analysis) because of the format of our data, namely that we
have more than a thousand cross-sections each for 10 patients. This makes it difficult to perform
comprehensive analyses, as we do not want to want to, for example, compare or equate a cross-section
of the kidney with one of the thorax. However, we have examples of visualizations of our data below.
In order to create our dataset from the DICOM images we are given, we wrote a Python script using
Pydicom to convert the DICOM images to NumPy arrays, and then storing each of the arrays as
NumPy files. We then created a text file storing paths to each of the stored NumPy arrays, which are
loaded into the dataloader. Only the high resolutions images are loaded, and then we scale down the
NumPy arrays for each high resolution set of data. We then set aside a set of 64 images to utilize
as our test set. An example of our high-resolution patient data can be seen below in Fig. 1, and our
generated low-resolution counterpart is seen in Fig. 2. These visualizations were a result of using a
custom PyTorch data-loader and scaling factor.

Figure 1
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5 Methods

For this project, we used a super-resolution generative adversarial network (SRGAN). An SRGAN is
comprised of two major parts - a generator and a discriminator. The two parts work hand-in-hand -
the generator tries to create fake images in an attempt to fool the discriminator while the discriminator
tries to distinguish between real and generated images.

Most image super-resolution papers utilize the mean-squared error loss function. However, we chose
to use a Binary Cross-Entropy with Logits Loss (BCEwithLogitsLoss) function and Smooth L1 Loss.
We utilize BCE with Logits loss (which is essentially a combination of a Sigmoid layer and BCE
Loss) for content criterion, used to measure our generator content loss. Smooth L1 loss is used for
our adversarial criterion, used to measure our generator adversarial loss and discriminator loss (since
it is less sensitive to outliers than MSE Loss and also prevents exploding gradients). The generator
tries to minimize the loss while the discriminator tries to maximize loss.

BCE with Logits Loss Function

l(x, y) = L = {l1, ..., lN}T , ln = −wn[yn · logσ(xn) + (1− yn) · log(1− σ(xn))] (1)

Smooth L1 Loss

loss(x, y) =
1

n

∑
i

zi (2)

zi = 0.5(xi − yi)2if |xi − yi| < 1 (3)
zi = |xi − yi| − 0.5, otherwise (4)

The typical architecture of a SRGAN looks like the below:

Picture of an SRGAN

We decided to use a BCELoss function because we wanted to start developing with a very simple
deep convolutional GAN, and BCELoss is a simple way to measure the binary cross entropy between
a target and output (since we have our target to be the high-resolution images and our output to be the
generated high-resolution images). In our discriminator and generator we utilize the Leaky ReLU
activation function to initialize, and for the forward propagation portion of the discriminator, we
use a sigmoid activation function, while for the generator we use a tanh activation function. The
main reason for using the various kinds of activation functions was to test out the effects of each, so
we plan to tinker with this a bit more as we move forward. We fully acknowledge that our current
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parameters and functions are not the most ideal for the task, but we did not want to complicate things
before we had a good grasp of a more basic version of the model.

Our upsample factor was 2, so we were conducting super-resolution from a 256x256 image to a
512x512 image. We also implemented dropout regularization on our discriminator to help with the
large contrast between the discriminator’s training and the generator’s training.

6 Experiments

We used a generator learning rate of 0.002, a discriminator learning rate of 0.0002, an Adam optimizer
for the generator, and a stochastic gradient optimizer for the discriminator. Online sources disagree
over whether having different learning rates for the generator and discriminator is acceptable, but we
found this to be a band-aid for the problem of our generator loss being higher than our discriminator
loss. We initially tried using an Adam optimizer for the discriminator, but the discriminator was
too good and caused the generator to be unable to train. In fact, we still ran into similar problems
with vanishing gradients, but making this change significantly improved our results. Another change
we made was to have the generator take four steps for every one that the discriminator took, which
also helped us reduce our generator loss. We used a batch size of 8 for our roughly 13,000 images
(approximately 1,300 per patient), in large part because our GPU was unable to store any larger batch
size.

The below results come from training our model over 10 epochs on our dataset.

Generated 512x512 image versus actual 512x512 images

On training, our discriminator and generator losses decreased as follows:

Our generator loss seems to plateau around 50, which is higher than what is optimal, but it is already
a significant improvement over previous iterations of our model.
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7 Conclusion

While our results show a lot of promise, they are still quite pixelated. We ran into problems where
our loss while testing was 10 to 20 times higher than our losses in training. The resulting images
were not as high-quality as expected, as we experienced both vanishing and exploding gradients as
well as a discriminator that was too good for our generator. Further avenues for investigation would
be to change our loss function to a Wasserstein loss or another suitable loss function, training for
more epochs than we had the computational capability to do, etc. This architecture, however, shows a
lot of promise and solving for our plateauing loss will go a long ways to improve the imaging quality.

8 Contributions

We all worked on this project jointly, contributing equally, and would like to thank Dr. Heike Daldrup-
Link, Dr. Joyce Wang, and Dr. Michael Zhang of Stanford School of Medicine for providing us the
data we used in this project as well as our TA Shubhang Desai for this help. Our code is located in
the Gradescope submission link for the final project.
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