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1 Abstract/Introduction

An increasingly popular approach in neuroscience is to train recurrent neural networks (RNNs) to
perform tasks done by animals in the laboratory. The dynamics in these networks often resemble those
seen in the real brain, and understanding how the RNN solves the task may provide mechanistic insight
into how the real nervous system does the same. For our project, we trained RNNs to perform motor
learning tasks in which an agent must control a cursor on a screen and move it to a target location.
These RNNs are intended to serve as models for a large dataset of neural recordings in premotor
and motor cortices (150-200 neurons recorded simultaneously) of two monkeys as they controlled a
manipulandum to generate point to point arm movements. The animals had to subsequently learn to
control the cursor after a curl force field (continuous force perturbations perpendicular to movement
direction) was applied to perturb the cursor movement. In order to model this task as a supervised
learning problem, we trained the RNN to generate the kinematics of smooth reaches to a target
location. The inputs to our RNNs are three timeseries–the horizontal and vertical locations of the
target as step functions (like a target appearing on the screen) and a pulsed "go cue" that indicates
when to start the movement. The output of the networks are the vertical and horizontal components
of the position, velocity, and acceleration for a smooth reach to the target that begins with the go cue
(Fig 1). In addition, we explored training reinforcement learning agents to perform the same tasks
(Fig 4).

2 Related work

A growing number of neuroscience studies train RNNs to model neural computations in cognitive or
motor tasks (Mante et al., 2013; Hennequin et al., 2014; Sussillo et al., 2015; Michaels et al., 2016;
Rajan, Harvey and Tank, 2016). Examples include modeling limb kinematics or electromyography
during a motor task and psychometric curves during decision making tasks. Other RNN models, such
as the latent factor analysis via dynamical systems (LFADS), are trained to infer latent dynamics
from single-trial neural spiking data (Pandaraninth et al., 2018). Despite the growing use of these
models in the neuroscience of motor control, to our knowledge, RNNs have not been built to perform
a point-to-point reaching task, nor have they been used to learn to compensate for perturbations that
alter the reaching behavior.

3 Dataset and Features

We are modeling the kinematics of idealized animal reaches, so we are able to generate synthetic data
for training and testing. This gives us an essentially infinite train and test sets. Position traces were
modeled as sigmoidal traces that saturated at the target location (Fig 1). The velocity and acceleration
traces were the first and second derivatives of this position trace respectively. The activity of hidden
units of the RNN were compared qualitatively to the activity of neurons recorded from the two
monkeys.
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4 Methods

‘Standard’ sequence model: The target locations and go cue are fed into a recurrent neural network
with 128 “ReLU” hidden unit activations. The output of the RNN is fed to a “dropout” layer (p=.3),
and then one fully connected ReLU layer (128 units) before going to a linear output layer with
six units, corresponding to the 6 kinematic output variables (Fig 1A). The network was trained
to minimize the squared error between its outputs and the ideal kinematic timeseries. This model
and all models below were trained using the Adam optimizer. We found that the inclusion of the
fully connected layer after the RNN as well as the dropout prior were critical to performance of the
network. In order to model force perturbations, the kinematics resulting from the force field were
added to the output of the network before computing the loss. The model thus had to learn to output
the compensated reach kinematics.

Sequence model with output buffer: This network received same three inputs described for the
previous model as well as a history of it’s recent outputs, called the "output buffer". We found that
the four previous time points were sufficient input to get the network to make smooth reaches. Force
perturbations, in this case, need to be added in real time. To make this more straightforward, the
network simply outputs two dimensional accelerations for the hand. The force perturbation can
be applied directly to these outputs as the addition of a constant when the acceleration places the
hand in the force field. The network is then trained to minimize the error between the ideal cursor
displacement time series and the double integral of the output layer acceleration timeseries.
We had to make several additional changes to the architecture in order for this model to work well.
Two fully connected layers (128 neurons) with dropout (p=.3) were added before the recurrent
layer. The hidden units of the RNN were also changed to GRU cells. This provided a modest
improvement over ReLU or tanh hidden units (Fig 2A). Making these architecture changes to the
‘standard’ sequence model did not improve performance on the force perturbation trials.

Tabular Q-Learning: Allowing the network to view it’s recent outputs and the targets is effectively
letting the network view the “state” of the hand and make the best movement to the target. This
problem statement is perhaps more natural to approach from a reinforcement learning perspective.
To get a baseline for how a reinforcement learning agent would perform the task, we trained an
agent using tabular Q-learning. The ‘state’ is the location of the agent and the location of the reward.
Adding multiple reward locations without doing any function approximation is equivalent to training
multiple agents, so we keep the reward location fixed. The agent was allowed to move a maximum
of one square in each direction, giving a total of 8 possible actions. To motivate direct movements
toward the reward location, the agent receives a reward of -1 for every time point until it reaches
the target where the reward is 0. To model force perturbations, we deflected the movements of the
agent by one square when the agent was in the force field. The agent can move in a straight line
perpendicular to the field by making diagonal steps.

Deep Q-Network (DQN): We also trained a DQN to perform this task (Mnih et al, 2015). The
problem is set up as above, but we also change the target location randomly on each trial. For settings
where the number of available positions was large (i.e. large screen size), the agent receives very
sparse informative feedback. This dramatically slowed training and seemed to add instabilities to TD
updates. To deal with this scenario, we performed graded training in which the radius around the
target that was rewarded started large and gradually decreased until the agent had to reach the target
exactly.
We trained a model to perform this task directly from pixels. We found that this actually learned
faster than trying to train from a parameterized version of the task. The input to the network were
16 x 16 images with two color channels. The target location was encoded as a one-hot matrix in
the first channel, and the agent’s location was encoded as a one-hot matrix in the second channel.
These inputs were given to two convolutional layers with eight channels and 16 channels respectively
(kernel size= 3). The outputs of the convolutional layers were then fed to two fully connected layers
(128 neurons each). A linear layer was used to project down to the eight action values.

5 Experiments/Results/Discussion

In a reaching task with no force perturbations, the standard sequence model was able to reproduce
the target kinematics timeseries with acceptable accuracy (Fig 1B & C). This network, however, was
unable to learn to compensate for force perturbations (Fig 1D & E).
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Figure 1: Performance of the ’Typical’ sequence model on reaching task with and without perturbations. A
Schematic of sequence model B Example input timeseries and output kinematics of RNN trained without force
perturbations. Left Input timeseries to RNN (blue-target x location, orange-target y location, green - go cue).
Target kinematics (bold; x component - blue, y component - orange) and the outputs of the model (shaded) are
shown to the right. C Example hand trajectories from model. Red dots indicate target locations and position
timeseries are shown in blue. D Same as B after the network was trained to compensate for force perturbations.
Note network outputs fail to match target timeseries. E same as C but for the network shown in D. Shaded
region indicates the location of the force perturbations

It is perhaps expected that the standard RNN above would not be able to compensate for location
specific force perturbations. That network has no natural way of representing locations where the
force perturbation will occur. In order to address this issue, we designed a network that could more
easily detect force perturbations during a reach by allowing the network to receive a recent history of
it’s outputs, which will be affected by force perturbations (Fig 2A). This sequence model with an
"output buffer", performed accurate reaches to target locations with and without force perturbations
(Fig 2B & C). Performance actually increased during force perturbations. We suspect that this is
due to the network upweighting the recent history of outputs as they become more relevant for
compensating for perturbations. When the force field was removed the network quickly recovered
performance and made more accurate reaches than before force perturbations.

For the "output buffer" network, we compared activity of single units in the hidden layer to activity
of single neurons recorded in vivo (Fig. 3). Both biological neurons and RNN hidden units changed
activity levels significantly after the "go cue" turns on, and show different levels of activity for
the different reaching directions. RNN units tended to have multi-phasic oscillations that are not
quite typical of actual neural activity; however, the peristimulus time histograms show qualitative
similarities. In future analyses, we would like to investigate the extent to which the low dimensional
dynamics of the entire network are similar to low dimensional dynamics of the neural population by
performing dimensionality reduction (see Mante et al (2013) for a similar approach).

We next investigated the extent to which reinforcement learning agents were able to solve the same
tasks. In a discretized 10x10-grid environment, a tabular Q-learning agent can quickly learn to make
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Figure 2: Performance of the
sequence model with an out-
put buffer on reaching task with
and without perturbations. A
Schematic of sequence model
B Left target position timeseries
(bold) and model estimated posi-
tion timeseries (shaded) for a net-
work trained without force pertur-
bations.Middle Target and output
position timeseries after model is
trained with force perturbations.
Right Target and output timeseries
after force perturbations are re-
moved. C Example hand tra-
jectories for models shown in B.
Shaded region indicates location
of force perturbations

direct movements to a fixed reward location with or without force perturbations (Fig 4). We were also
able to train a convolutional DQN agent to move a cursor to a randomly placed reward directly from
pixels (Fig 4). This agent actually trained faster than a DQN trained from a parameterized version of
the task. We believe the convolutional DQN was able to quickly find an efficient embedding of the
task for which it could learn the action values more readily than our chosen parameterizations. For a
variety of initial locations, the agent made direct movements towards the target. When comparing the
performance of the network to an ideal agent that moves straight to the target with minimal moves,
we see that we achieve ideal performance for even some very long trajectories, but that the agent
typically makes a few superfluous moves before reaching the target. This may reduce with further
training. We implemented force perturbations for the DQN but it was not able to learn to compensate
well. Including the last several frames as additional inputs to the DQN did not dramatically improve
performance. A DQN is likely capable of performing this task with a more thorough hyperparameter
search.

6 Conclusion/Future Work

In this project, we trained four different model classes (a typical sequence model, a sequence model
with an output buffer, a tabular Q-learning network and a DQN) to perform motor learning tasks in
which an agent must control a cursor on a screen and move it to a target location. All four models were
able to learn the basic point-to-point reaching task well; only the output buffer sequence model and
the tabular Q-learning model could readily learn to correct for location specific force perturbations.
The output buffer RNN could learn the basic center-out reach task and the force perturbations much
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Figure 3: Example hidden unit ac-
tivity (A) and recorded neural ac-
tivity (B)

Figure 4: Performance of tabular
and Deep Q Network reinforce-
ment learning agents. Top Left -
Example trajectories of tabular Q-
learning agent trained to navigate
to fixed goal location. Goal loca-
tion is indicated by black square
and blue lines show agent trajecto-
ries.Bottom Left - Example trajec-
tories of tabular Q-Learning agent
with force perturbations (shaded
region). Top Right - Example tra-
jectories of agent trained with a
Deep Q-Network. Bottom Right
Performance of DQN vs an ideal
agent that takes a direct vector to
the target. Unity line is shown for
comparison.

better than the typical sequence model, with hidden layer units showing more biological neuron-like
activity patterns.

There are three main thrusts to our next steps. First we could vary the task parameters, such as making
the force perturbations non-static, to better simulate the actual motor task performed by animals and
study how the neural networks learn the more complicated, new task. Second, it would be interesting
to explore how agents trained to output continuous actions, such as DDPG networks (Lillicrap et al,
2019), could perform this task. In our current approach, the agent cannot directly overcome the force
perturbation by making "stronger movements". It can only compensate by moving in a straight line
perpendicular to the force field. In addition, the nervous system must act by controlling the magnitude
of different muscle contractions, so an agent that must make continuous instead of discretized actions
is likely a more relevant model for how the nervous system performs this task. Third, in this work,
we compared units of the recurrent layer to single neurons recorded from the motor cortex during
comparable reaches. The next step would be to compare the low dimensional activity of the RNN to
the low dimensional activity of the neural population. We are particularly interested in how the RNN
adjusts its activity to compensate for the force perturbations and how this compares to the neural data.

7 Contributions

MHP and XS conceptualized project and model classes and prepared manuscript. XS performed
electrophysiology experiments, wrote implementation of initial sequence model using teaching signal
(not shown), performed comparisons of hidden units to neural data, and performed hyperparameter
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searches for ’typical’ sequence model and ’output buffer’ sequence model. MP wrote implementations
for and trained initial instantiations of ’typical’ sequence model, ’output buffer’ sequence model,
tabular Q-Learning model, and DQN.
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