
Final Report - Using deep autoencoder feature embeddings to explore
single-cell phenotypes in pediatric cancer

Timothy Keyes

Abstract
Single-cell data are collected in both research and clinical laboratories in order to evaluate leukemia patients’
blood samples for the presence of various cell types. Specifically, the enumeration of various developmental “blast”
types within leukemic samples is often of clinical and research interest. However, state-of-the-art methods for
measuring cells’ biological characteristics are prone to batch effects and other forms of noise due to differences in
individual laboratories’ instrumentation, operators, and on-hand reagents. Here, we adapt a previously-published,
multi-tasking autoencoder called “SAUCIE” (Sparse Autoencoder for Unsupervised Clustering, Imputation, and
Embedding) to denoise, cluster, and visualize single-cell data from human blood samples taken from B-cell Precursor
Acute Lymphoblastic Leukemia (BCP-ALL) patients. We evaluate the performance of the algorithm compared
to a gold-standard, supervised clustering algorithm developed specifically for BCP-ALL data and investigate its
population-specific performance.

1 - Introduction

Problem importance and motivation

In the clinical evaluation of leukemia (blood cancer), most diagnostic and prognostic tests rely on the identification
and enumeration of leukemic “blasts” in the blood and bone marrow of patients. Blasts are immature blood cells
that - due to genetic and epigenetic abnormalities - develop aberrancies in cellular maturation that cause them to
become cancerous. Blast phenotypes differ widely between patients both because of individual differences in the
biology of each patient’s cancer and because of instrumentation differences between clinics where testing is conducted.
This means that the current gold standard of diagnostic and prognostic testing for leukemia relies on pathologists
manually inspecting the protein-level phenotypes of cancer patients by eye using microscopy,1 and flow cytometry.2

Here we use deep learning to take a step towards automating methods of enumerating leukemic blasts by building an
autoencoder framework capable of denoising, batch-correcting, and clustering protein-level data collected by single-cell
cytometry such that individual differences in protein marker expression are preserved but instrument-to-instrument
differences are reduced. We also use this multi-tasking autoencoder to extract clustering information from one layer
of the network for the unbiased indentification of blast-like cells within the denoised feature space.

Input and Output

The input for this algorithm is a .fcs file3 (or folder of .fcs files) containing single-cell information collected via
a flow cytometer or a mass cytometer, two types of instrument that collect protein-level features from individual
cells.2 The data represented in an .fcs file can be represented as an [m x n] matrix in which m represents the number
of cells that you’ve measured and n represents the number of proteins that you’ve measured within each cell.

The output of the algorithm includes the following:

1. A reconstructed n-dimensional feature-vector for each cell after being passed through the autoencoder.

2. A label for each cell indicating which cluster it was assigned to by the decoder of the network (see methods
below). The clusters are identified in an unsupervised manner and the number of clusters is automatically
detected by the network.
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2 - Related Work
Only a small amount of previous work has applyied deep learning to single-cell data, and an especially small amount
of work has applied deep learning to flow or mass cytometry data. Specifically, 3 algorithms have been previously
published that apply deep learning to single-cell cytometry data: DeepCyTOF,4 CellCNN,5 and SAUCIE.6 Details
about each of these algorithms are provided below.

DeepCyTOF is a feed-forward neural network that automates the task of “gating” immune cell populations, a process
whereby immunologists identify cell populations of interest manually by sequentially applying two-dimensional,
hand-drawn filters to single-cell data.4 DeepCyTOF was the first deep learning algorithm applied to mass cytometry
data, and was built as a depth-4 fully-connected network with softplus hidden units (except for the output layer,
which was a softmax layer). Layer sizes were 12, 6, 3, and 1, respectively and were trained with RMSprop on a
training set of blood samples taken from 14 patients infected with West Nile Virus. Importantly, DeepCyTOF was
developed in order to identify distinct immune cell populations (which are known to differ widely from one another)
and has not been tested on leukemic cell types.

CellCNN (which stands for “Cellular Convolutional Neural Network”) is a convolutional neural network approach
to identifying cellular subtypes within a sample that associate with a particular clinical outcome of interest.5 In
short, CellCNN works by applying 1-3 m-dimensional filters to each cell in the training set (where m is the number of
proteins measured in each cell). The convolutional layer is followed by either a max pooling or average pooling layer,
allowing the algorithm to identify the 1-3 major phenotypes associated with the clinical outcome on a single-cell level.
The strengths of CellCNN include that it is able to identify relatively rare cell types that associate with clinical
outcomes while ignoring cell types that aren’t associated with the outcome-of-interest. However, a weakness of
CellCNN is that it doesn’t perform any denoising or batch correction, which prevents it from being a fully end-to-end
approach even when samples are clinically annotated.

This project leans heavily on existing implementations of a network method called SAUCIE developed using non-
cancer cells and that we have adapted for this project.6 SAUCIE (“sparse autoencoder for unsupervised clustering,
imputation, and embedding”) is a multitasking autoencoder that “extends” the architecture of a simple autoencoder.
It does so by adding several layers that are regularized in such a way that their outputs are biologically meaningful.
These layers include a clustering layer that is regularized to penalize within-cluster distances between cells and that
performs information dimension (ID) regularization (to encourage cluster sparsity); in addition, the “embedding”
layer of the autoencoder (i.e. the middle layer between the encoder and the decoder) is regularized such that the
pairwise distances between cells from different batches is minimized, allowing for denoising and batch correction.
Details of the SAUCIE network are described below.

3 - Dataset and Features
In this project, I am working with data originally published in a previous paper from my lab.7 The paper devised a
method of “aligning” cancer cells with the healthy cell type with which they are most similar. Overall, the main idea
of this paper was that comparing cancer cell subtypes to healthy cell subtypes might help us to infer how cancer cells
behave or where they come from, and its main contribution to the field was a gold-standard clustering algorithm
(called the “developmental classifier”) that serves as a gold-standard method of annotating cancer cell types into
their most biologically-interpretable cellular subpopulation. Specifically, the dataset obtained during this study
included mass cytometry data from 60 patients with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) and
5 healthy control patients.8

Basic dataset characteristics

For this project, I worked with a cleaned version of these data to eliminate some of the frustration of working with
samples that vary significantly in size and quality. Specifically, I limited the dataset to solely diagnostic specimens
taken from the blood or bone marrow, and I sampled 10,000 cells from each unique cell subpopulation identified
by the developmental classification algorithm described above. All patients that did not have at least 10,000 cells
total in their sample were removed from the analysis. Information regarding the number of cells and basic summary
statistics of the dataset are provided in the Appendix (Table 1 and Table 2 ).
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Pre-processing

Data pre-processing was performed as is standard for CyTOF data analysis.9 Specifically, the following steps were
performed: 1) All measurement values (“ion counts”) taken from the cytometry were arsinh-transformed with a
cofactor of 5 such that final value = arcsinh( counts

5 ). 2) Mass cytometers are prone to artefacts on both the upper-
and lower- ends of their dynamic range. Thus, protein measurement values at or below the 1st percentile and at or
above the 99th percentile of the measured ranges were excluded as outliers. 3) Protein expression values for remaining
cells were centered and scaled such that each protein (each feature) had a mean of 0 and standard deviation of 1.

Example inputs

A single-cell feature vector in the input will look like this:

CD19 CD20 CD34 CD38 IgMi IgMs CD179a CD179b CD127 Tdt CD45 PLCg2 CD22 p4EBP1 Ikaros CD79b pSTAT5 CD123 Ki67 IgL kappa IKAROS_i CD10 pAkt CD24 CRLF2 RAG1 Pax5 pSyk CD43 CD58 HIT3a CD16 pS6 pErk HLADR pCreb
-0.5 -0.31 -1.12 -0.15 0.19 -0.68 1.18 0.24 -0.62 -0.91 -0.91 1.55 0.36 -0.72 -0.71 -0.96 0.15 -0.71 -0.55 -0.11 -1.28 1.46 -0.24 -0.33 -0.72 -0.53 -1.24 1.41 -0.03 -0.37 -0.44 -0.71 0.79 -0.2 0.1 -0.9

Each cell is associated with 36 protein markers, each of which will provide 1 value in the cell’s feature vector. Likewise,
each cell population (of which there are 15 according to the gold-standard), will be associated with a distribution of
marker expression levels for each protein. An example of what the distributions for two cell populations looks like
relative to one another is provided in the Appendix (Figure S2 ).

4 - Methods
Description of Network Architecture

SAUCIE is a multitasking autoencoder that has 3 encoding layers, 1 embedding layer, and three decoding layers, all
of which are fully-connected. The number of neurons per hidden layer in the encoder were 512, 256, and 128 with a
symmetric decoder; the embedding layer had 2 neurons. The embedding layer used a linear activation function; all
other layers used a leaky rectified linear unit activation with leak = 0.2 function except the final layer of the decoder
(the layer responsible for performing clustering), which used a rectified linear unit (without leak). Batches of size 300
were used for 1000 steps (in order to train on the entire dataset for 20 epochs). The optimization was performed
with ADAM and a learning rate of 0.001.

Loss function

Our adaptation of SAUCIE has 3 components to its loss function. The first component is the simple reconstruction
penalty present in any autoencoder, for which we used the mean-squared error of the output representation and the
original input data. If we consider the following quantities. . .

• xi = the input feature vector of the ith cell in the dataset
• x̂i = the output feature vector of the ith cell in the dataset
• m = the number of cells in the input dataset,

Then the loss term from the reconstruction is given by the following:

Lreconstruction = 1
m

m∑
i

(xi − x̂i)2

The other two components of the loss function are derived from the “clustering” layer (the second-to-last decoding
layer), which performs two (opposing) kinds of regularization. The first regularization penality in this layer is
an interformation dimension (ID) regularization that encourages activations of the neurons in the layer to be
binarized such that sparser representations (i.e. representations with fewer clusters) are penalized less. Thus, the ID
regularization term (applied to the clustering layer) is given by

LID = −
k∑

i=1
pilog(pi)
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where k is the number of neurons in the clustering layer and pi normalized activation of the ith neuron in the
clustering layer ai such that pi = ai

||ai||1 .

Finally, the last component of the loss function is a penalty on intracluster distances for the clusters in the clustering
layer of the network, which is calculated as the Euclidian distance between points that are located in the same
cluster (in the denoised output space):

Lcluster distances =
∑
i,j

||x̂i − x̂j ||2

for all cells i, j assigned to the same cluster by the network. Thus, while LID is minimized by assigning all cells to
the same cluster, Lcluster distances acts as an opposing balance, as it will be minimized only if each cell were placed in
a cluster by itself.

Thus, the total loss function is given by Ltotal = Lreconstruction + λc ∗ LID + λd ∗ Lcluster distances, where λc and λd

are tuning parameters that weight the degree that the ID regularization and the intracluster distance penalty will
affect the clusteringl layer. In our implementation, we tuned these hyperparameters by performing a grid search over
the values 0-1 at 0.1 intervals and selecting the combination with optimal performance.

5 - Experiments/Results/Discussion
Hyperparameter tuning

Default values for the number of neurons to use in each layer were used, by the hyperparameters λc and λd were
tuned by calculating each result’s performance using a previously-validated metric for analyzing clustering results
with single-cell cytometry data.10 Specifically, because SAUCIE is an unsupervised learning algorithm, we evaluated
its performance by comparing it to the “gold-standard” supervised clustering algorithm that the authors applied
to the same data in the original paper for which the data were collected. Specifically, we compared SAUCIE’s
performance to the original authors’ algorithm using a version of the F1-measure of classification accuracy commonly
used to compare single-cell clustering methods to one another. In short, the F1-measure is the harmonic mean of
precision and recall for classification compared to a gold-standard method. SAUCIE performed with an F1-measure
overall of 0.19, making it slightly less than average as far as clustering algorithms applied to mass cytometry datasets
are concerned.

Population-specific performance is shown here:

Developmental Population Precision Recall F-measure
Mature_Non_B 0.3023151 0.6066280 0.4035298
Mature_B 0.1953897 0.3941621 0.2612670
Immature_B1 0.1274997 0.9846954 0.2257669
Early_Progenitors 0.1198223 0.5873143 0.1990375
Pre_Pro_B 0.1096778 0.8470541 0.1942090
Progenitor_3 0.1070355 0.8266480 0.1895304
Pro_B1 0.1072504 0.6226079 0.1829805
Pre_B1 0.0956119 0.7482262 0.1695569
Late_Progenitors 0.1015377 0.4964958 0.1685961
Pre_B2 0.0921190 0.4503504 0.1529518
Progenitor_1 0.0812222 0.6276021 0.1438303
Pro_B2 0.0802767 0.6211043 0.1421772
Progenitor_2 0.0783186 0.3828829 0.1300379
Immature_B2 0.0711584 0.5516618 0.1260569
HSC 0.0755134 0.3690214 0.1253718

Embedding

If we look at the values for each cell in the embedding dimension of the autoencoder, we can see that the embedding
doesn’t seem to partition the gold-standard clusters from each other very well, but it does partition the clusters
identified by the network itself quite well. . .
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These plots suggest that one way to improve the performance of the unsupervised clustering might be to include more
neurons in the embedding dimension (as whatever mapping is being performed by the gold-standard categorizations
may not be captured well in just 2 dimensions).

6 - Conclusions/Future Work
In general, our algorithm was not particularly well-performing compared to the gold-standard. This is probably
because the clusters that SAUCIE learns to identify are the ones that allow the best reconstruction of the input data
(in our case, the input 36-dimensions) and not necessarily the clusters with the most biological interpretability (which
is what the gold-standard algorithm is meant to represent). This may indicate that that a purely unsupervised
approch to cluster identification may not be the best strategy for detecting rare cell types of a particular developmental
origin.

In future iterations of this project, I would be interested in combining the autoencoder that I experimented with
here and some of the supervised approaches that have been used in either CellCNN (to incorporate a component of
the loss function that is associated with a clinical outcome) or DeepCyTOF (to incorporate a component of the loss
function based on having direct access to the class label for each cell).

7 - Contributions
I was the only team member for this project, so I performed all analyses myself.
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Appendix
Table 1 - Summary table of patient cell counts

patient Number of cells
Healthy1 194185
Healthy2 1003294
Healthy3 2552004
Healthy4 662174
Healthy5 81935
UPN1 857516
UPN1-Relapse 10330
UPN10 62436
UPN10-Relapse 158774
UPN11 353739
UPN12 856763
UPN13 356801
UPN14 357327
UPN15 720760
UPN16 471291
UPN17 1054732
UPN18 216344
UPN19 701822
UPN2 310516
UPN20 640674
UPN21 162456
UPN22 34637
UPN22-Relapse 42027
UPN23 508632
UPN24 481026
UPN25 768576
UPN26 351252
UPN27 782173
UPN28 340810
UPN29 722647
UPN3 161258
UPN30 765328
UPN31 377982
UPN35 3525
UPN35-Relapse 14228
UPN4 622846
UPN45 138423
UPN45-Relapse 61082
UPN47 255890
UPN48 306940
UPN49 468008
UPN5 659056
UPN50 388890
UPN51 298401
UPN52 370408
UPN53 564090
UPN54 545150
UPN55 500697
UPN56 401562
UPN57 134172
UPN58 226294
UPN6 752164
UPN60 121538
UPN60-Blood 197192
UPN61-Blood 111542
UPN62 243358
UPN62-Blood 61112
UPN63 214145
UPN63-Blood 51455
UPN64-Blood 12919
UPN65-Blood 50700
UPN67 62025
UPN68 79601
UPN69 227090
UPN7 908214
UPN8 730373
UPN9 870053
UPN90 447251
UPN90-Relapse 154082
UPN91 361951
UPN92 34814
UPN93 128414
UPN94 67792
UPN95 15756
UPN95-Relapse 173120
UPN96 921890
UPN97 47313
UPN98 353178
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Table 2 - Summary statistics for the dataset

## patient CD45 PLCg2 CD19
## Length:115879 Min. : -1.1313 Min. :-1.1343 Min. : -1.122
## Class :character 1st Qu.: -0.3058 1st Qu.:-0.7013 1st Qu.: 2.981
## Mode :character Median : 0.7924 Median :-0.4202 Median : 9.091
## Mean : 2.3708 Mean :-0.3214 Mean : 15.668
## 3rd Qu.: 3.0605 3rd Qu.:-0.1413 3rd Qu.: 20.814
## Max. :1617.0559 Max. :82.6025 Max. :399.320
## CD22 p4EBP1 Ikaros CD79b
## Min. : -1.121 Min. :-1.1270 Min. :-1.113 Min. : -1.1276
## 1st Qu.: -0.385 1st Qu.:-0.3457 1st Qu.: 1.041 1st Qu.: -0.4054
## Median : 0.344 Median : 0.4785 Median : 3.280 Median : 0.2837
## Mean : 1.251 Mean : 1.2535 Mean : 4.768 Mean : 0.8862
## 3rd Qu.: 1.679 3rd Qu.: 1.9454 3rd Qu.: 6.852 3rd Qu.: 1.4534
## Max. :3947.908 Max. :36.0411 Max. :85.211 Max. :1238.4268
## CD20 CD34 CD179a pSTAT5
## Min. : -1.1232 Min. : -1.108 Min. : -1.1302 Min. : -1.129
## 1st Qu.: 0.1103 1st Qu.: 11.049 1st Qu.: -0.6377 1st Qu.: -0.580
## Median : 2.7838 Median : 32.155 Median : -0.2929 Median : -0.177
## Mean : 11.0486 Mean : 48.279 Mean : -0.0403 Mean : 0.286
## 3rd Qu.: 11.5035 3rd Qu.: 70.023 3rd Qu.: 0.1788 3rd Qu.: 0.592
## Max. :2362.1838 Max. :2956.034 Max. :2791.2075 Max. :4353.186
## CD123 Ki67 IgMi IgL kappa
## Min. : -1.1136 Min. : -1.120 Min. : -1.131 Min. : -1.1264
## 1st Qu.: -0.2473 1st Qu.: -0.319 1st Qu.: -0.548 1st Qu.: -0.5782
## Median : 0.7159 Median : 0.855 Median : -0.110 Median : -0.1744
## Mean : 1.6628 Mean : 6.304 Mean : 1.494 Mean : 0.2510
## 3rd Qu.: 2.4637 3rd Qu.: 5.311 3rd Qu.: 0.755 3rd Qu.: 0.5888
## Max. :256.0133 Max. :7137.480 Max. :6827.284 Max. :1119.9121
## IKAROS_i CD10 CD179b pAkt
## Min. : -1.11967 Min. : -1.076 Min. :-1.1307 Min. :-1.12993
## 1st Qu.: -0.00687 1st Qu.: 265.449 1st Qu.:-0.3599 1st Qu.:-0.65985
## Median : 1.58254 Median : 412.521 Median : 0.3895 Median :-0.33451
## Mean : 8.69393 Mean : 448.916 Mean : 0.9981 Mean :-0.10036
## 3rd Qu.: 9.76113 3rd Qu.: 592.952 3rd Qu.: 1.6056 3rd Qu.:-0.00698
## Max. :306.35855 Max. :8207.047 Max. :79.2710 Max. :96.83366
## CD24 CRLF2 CD127 RAG1
## Min. : -1.089 Min. : -1.1240 Min. : -1.1319 Min. : -1.124
## 1st Qu.: 122.943 1st Qu.: -0.4865 1st Qu.: -0.6057 1st Qu.: -0.635
## Median : 249.645 Median : 0.0086 Median : -0.2253 Median : -0.288
## Mean : 354.999 Mean : 0.5176 Mean : 0.1687 Mean : 0.257
## 3rd Qu.: 472.004 3rd Qu.: 0.9129 3rd Qu.: 0.4486 3rd Qu.: 0.240
## Max. :11929.121 Max. :1926.6940 Max. :1422.5455 Max. :3502.190
## Tdt Pax5 pSyk CD43
## Min. : -1.121 Min. : -1.120 Min. : -1.12314 Min. : -1.104
## 1st Qu.: 0.368 1st Qu.: 4.077 1st Qu.: -0.61694 1st Qu.: 13.060
## Median : 1.903 Median : 11.326 Median : -0.24565 Median : 37.675
## Mean : 3.327 Mean : 16.081 Mean : 0.06261 Mean : 68.454
## 3rd Qu.: 4.642 3rd Qu.: 22.791 3rd Qu.: 0.38189 3rd Qu.: 86.343
## Max. :4339.835 Max. :266.003 Max. :141.63513 Max. :8124.547
## CD38 CD58 HIT3a CD16
## Min. : -1.1217 Min. : -1.112 Min. :-1.13152 Min. :-1.1275
## 1st Qu.: 0.5536 1st Qu.: 1.588 1st Qu.:-0.66915 1st Qu.:-0.4244

8



## Median : 2.9406 Median : 4.601 Median :-0.35835 Median : 0.2393
## Mean : 9.7400 Mean : 7.016 Mean :-0.19297 Mean : 0.8588
## 3rd Qu.: 9.2547 3rd Qu.: 9.658 3rd Qu.:-0.04804 3rd Qu.: 1.3881
## Max. :3106.6267 Max. :2605.045 Max. : 8.32404 Max. :34.1563
## pS6 pErk HLADR IgMs
## Min. : -1.133 Min. : -1.1196 Min. : -1.066 Min. : -1.1304
## 1st Qu.: 0.957 1st Qu.: -0.5621 1st Qu.: 68.323 1st Qu.: -0.4188
## Median : 3.473 Median : -0.1369 Median : 162.820 Median : 0.2217
## Mean : 9.350 Mean : 0.2829 Mean : 270.851 Mean : 0.9521
## 3rd Qu.: 8.272 3rd Qu.: 0.6816 3rd Qu.: 354.250 3rd Qu.: 1.3034
## Max. :6388.095 Max. :104.1688 Max. :7318.328 Max. :2265.0278
## pCreb
## Min. : -1.111
## 1st Qu.: 1.578
## Median : 5.202
## Mean : 9.686
## 3rd Qu.: 12.550
## Max. :3152.514

Most important to note here is that, as is common with mass cytometry data (particularly in cancer), the distributions
are highly skewed such that there are often huge(!) outliers in the positive direction due to instrumentation failure.
These values are not biologically informative, so filtering out all measurements that are above the 95th percentile in
a given channel was performed.

Figure S1 - Example marker distributions
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Density plots for two gold-standard cell populations are provided above for several example protein markers in the
dataset. Notably, features can differ between cell populations both in their central tendency and dispersion, and
some markers will be more/less similar than others across multiple cell populations.
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