
 1

CS 230
Deblurring and Coloring Images with Deep Learning – CS 230 – Spring 2020

Omar El Safty, Karsu Ipek Kilic
osafty@stanford.edu, karsu@stanford.edu

Stanford University

Abstract
Image deblurring and image colorization are two active research fields in computer vision that both aim at
restoring and adding style to images. In this project we combine two deep neural networks models for
deblurring and image colorization to restore motion blurred grayscale images as colorized and deblurred.
We explore different ways of adapting and combining a GAN model for deblurring with a pretrained CNN
model for image colorization. Our implementation results in comparable image quality to the state-of-the-
art models.

1. Introduction

One of the artifacts of photography is when images turn to be blurry due to camera vibration or the motion
of the object being photographed, leading to poor quality blurry images. The degree of blurriness can vary
depending on several factors such as depth variation, the degree to which the camera is shaken and the
blockage of the boundaries of the motion [1].
Deblurring such poor quality images to restore
them as realistic sharp images is an active
research area. Image colorization, on the other
hand, is another popular field in computer
vision generally aiming to add color to old
black-white pictures realistically. Image
colorization has wide range of practical implementations that involves the restoration of old grayscale
videos and enhancing the coloring of images. Our project combines these two different fields with the aim
of restoring old pictures that suffer from gray scaling and that are blurry. The goal is to build a deep neural
network that will take blurry grayscale images as input, first produce deblurred grayscale images and then
colorize them as realistic as possible, depicted in Figure 1. Ultimately the proper junction of these two
neural network implementations, deblurring and colorizing respectively, to build a properly functioning
pipeline is the main task of this project.

2. Related Work

Since there are many previous implementations of image colorization and deblurring we benefited from
readily available algorithms with the goal of improving upon them. For both applications convolutional
neural networks (CNN) are shown to be highly effective, in addition to implementations featuring
generative adversial networks (GAN) [3-6]. In fact, GAN has been reported to result in improved accuracy
for deblurring task [7,1,8]. One of the main challenges for colorization is to make sure that the end result
has a plausible color scheme and minimize a final brownish color scale, which heavily depends on how
extensive the dataset is [3]. One relatively recent study [9] achieved much more realistic colorful schemes
mainly through modifying the loss function in a way to adjust the weighting of more rare colors to prevent
yellow/brownish coloring of generated images. As for the deblurring of images, the adjustment of pixel
coloring in the higher resolution versions has been challenging. Another challenge is that most models
developed perform the best for a certain level or type of blurriness. Furthermore, since it is not possible to
have ground truth versions of blurry images, sharp images are artificially blurred with blur kernels to be
used for training deblurring models, thereby yielding these models’ performance limited to certain types of
blurs [1]. These limitations lead to difficulties for generalizing the use of deblurring models
implementations good performance. While the deblurring part of our model is specific to gray scale blurry
images, it performs comparable to the previously implemented GAN based deblurring models; indeed we
were able to improve the quality of the final generated images although very slightly.

Figure 1: A blurred gray scale image will be first deblurred
and then colorized. [2]

 2

3. Dataset and Features

Our data set was taken from [10] prepared for a deblurring CNN model, containing 1050 sharp, slightly
blurred and motion blurred images (2048x1536). For the colorization part of the pipeline we grayscaled
these blurry images through data analysis and used those as the main input for our model. As for the
colorization model an important modification on the images is embedded inside such that colorful RGB
images taken as input are converted to “Lab” where L represents the grayscale version determining image
brightness and a, b representing green-red and blue-yellow color spectrum respectively [11]. The grayscale
images are used as the main input and the RGB versions represent the ground truth. For all of our
training/test implementations we split the data such that 10% of it was in test and the rest was in training.

4. Method

Our approach involves the combination of a deblurring GAN model and an image colorization CNN model.
A blurry gray scale input image first enters the GAN to be deblurred and the output from the deblurring
part of the model then enters the colorization model to be recovered as colorized and deblurred. The CNN
model was integrated as a pretrained model, whereas GAN model was rained with grayscale blurry images
as input. The quality of the output images is evaluated both visually and based on their peak to signal ratio
(PSNR) values, which we use as our main accuracy metric. PSNR is defined by the formula given in Eq. 1,
where MAX corresponds to the maximum possible value for the pixels, which is 255 for 8 bit images, and
MSE is simple mean squared error calculated between ground truth images and generated images:

 𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔!"	(𝑀𝐴𝑋#/𝑀𝑆𝐸) (1)

Initially we experimented with
combining these two model
implementations in two different
ways and compared their
performance. The final form of the
pipeline of the model is shown in
Figure 2. For the image colorization
CNN model, every convolution layer
shown is formed by three to two
convolutional layers that also include
ReLU activation layer and a layer for
batch norm [9]. Instead of an
Euclidean loss function, multinomial
cross entropy function was preferred
as the main cost function, since the
former has been widely reported to
lead to a more grayscale coloring. For
the deblurring part, a conditional GAN model using multiple loss functions was adapted from [7]. The
generator receives the input image and outputs a deblurred version of it, whereas the discriminator takes
both the ground truth image and the output from the generator, and decides which one is more realistic
where the goal of the generator is to produce outputs that can trick the discriminator. For the discriminator
a Wasserstein GAN (WGAN-GP) model was used which is known to provide a stable training of GAN
architectures [12]. The loss function is the combination of the content loss and adversarial loss as shown in
Eq. 2:
 𝐿𝑜𝑠𝑠 = 𝐿𝑎𝑑𝑣 + l𝐿𝑐𝑜𝑛𝑡																 (2)

where l is taken as 100 as suggested in [7]. Adversarial loss was chosen to be a Wasserstein loss and the
content loss was chosen to be perceptual loss, evaluating the difference between the generated and real
image. The GAN architecture consists of convolution layers with ½ strides, as well as nine residual blocks

 Deblurring (GAN)

 Image Colorization (CNN)

Figure 2: Schematic for the pipeline where the images are first
deblurred with a GAN model and the output of the deblurring part is
used as input for a CNN model for colorization. Deblurring part is
adapted from [7] whereas the CNN model was adapted from [9].

 3

and convolution blocks that are transposed; whereas the ResBlock layers are formed by a convolution layer
and a normalization layer. ReLU activation is used in each layer.

5. Experiments/Results/Discussion
We first experimented with two models for image colorization
adapted from a study presented here [11] and both models are based
on CNNs, with one of them benefiting from pretrained weights for
object classification to support colorization. These weights were
obtained through training around a million images obtained from
image-net [13]. We split 350 images into training and test sets only,
having 315 and 35 images respectively. Figure 3 shows the results
we obtained with these two models using blurry images. For the first
version, the final colorized images are in green/red scale whereas for
the second version the results are in purple/blue color scheme. Note
that these input images we used were not taken from image-net, on
which the object classification was trained, where the algorithm does
a much better job although still resulting in a brownish color scheme.
This shows that the dataset has a significant effect on the results.
Furthermore, we experimented with changing the architecture of the
network and playing with the hyperparameters as shown in Table 1, however the best loss values we
obtained, shown in Table 2, indicate that the model still performs very poorly. Loss Another very important
reason for why we were not able to improve the results as expected is likely to be that the number of images
we work with was not sufficient. For a successful image colorization task the model needs to be trained by
a very large number of images which can be on the order of million. For this reason we decided to use a
pretrained image colorization model to support our network as described in Fig. 2, which was adapted from
another study [9]. This adaptation performs much better compared to our previous implementation in our
first milestone, as shown in Figure 4 and 5. Although there is still a brownish color scale in the outputs,
they are significantly more realistic than the outputs shown in Fig. 3 (b) and (d).

Table 1: Some hyperparameters and information related to the runs both models performed with both blurred images.

 Number of
epoch

Number of steps
per epoch

Learning
rate

Optimization
Algorithm

Batch
Size

Version 1&2 20 32 0.003 Adam 10

Table 2 compares the loss values obtained with the CNN utilizing object classification for blurred and sharp
data sets.
 Table 2: Loss values for the blurred and sharp data sets.

We combined the deblurring GAN model with the new image colorization CNN model in two different
ways. First, we used grayscale blurry images as input that enter into the colorization model; and then the
colorized blurry images enter into the deblurring model to restore their sharpness. The second method is to
use grayscale blurry images as input to the deblurring model to deblur them first and then input the deblurred
grayscale images to the colorization model to restore the images as sharp and colorized. We compared the
two models in terms of how the colorization performs depending on working with blurred or deblurred
input images; in other words, whether deblurring performs prior to or after colorization. Our results indicate
that depending on which model is used first the quality of the final restored image changes. Figure 4 shows
that for two different pictures that when the images are first deblurred, colorization model seems to perform
better in that a sharper contrast is achieved. To further support this result, we also evaluated how the model

 Loss Version 1 Loss Version 2

Blurred Data Set 0.979 1.0091

Sharp Data Set 0.950 0.0043

(a) (b)

(c) (d)
Figure 3: Test results obtained
with model Version 1 with a blurry
image (a,b) and with model
Version 2 blurry images with
another blurry image (c,d). RGB
images represent ground truth.

 4

works for different levels of deblur. Figure 5 shows the same image moderately blurred and heavily blurred
(Fig. 5(a) and Fig. 5 (d)), and in both cases first deblurring and then colorizing the image results in a better
more realistic color scale, since first deblurred and then colorized images have less of a brownish tone
overall. It can be concluded that the deblurring model should be implemented before the colorization model,
therefore, the next steps involved tailoring the deblurring model to better suit the particular input of this
project, which are gray-scaled blurred images as opposed to colorized blurred images.

Before training on our grayscale images, we also tested the effect of multiple passes into the deblurring
model on a heavily blurred image, one that is not fully deblurred after passing through the deblurring model
once. The results, seen in Figure 5, indicate that multiple passes into the deblurring model does not improve
the resultant image. In fact, it causes some noise in the form of blurriness in the image. As such, we settled
on using only one pass through the deblurring model for our next analyses, which involved retraining the
deblurring model using greyscale images.

We trained the model with motion blurred grayscale images using batch size 1 and 2. 4 epochs with 2000
iterations each were completed, and for both the generator and the discriminator Adam optimization was
used with a learn rate equal to = 10-4, which are all listed in Table 3. For batch size 2, the default loss value
that was obtained with the previous implementation of the deblurring model [7] was able improve slightly,
whereas for batch size 1 the loss value did not improve as can be seen in Table 4. Consequently, we were
able to improve the PSNR values from 28.3 to 29 with batch size 2 as shown in Table 5. Figure 6 show the

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 4: Test results obtained with the same picture but with two different levels of blur, where the
blurry colorful versions of the image in (a) is less blurred than the one in (e). The colors of the images in
(a) and (e) represent the ground truth and their gray scale versions are used as input to the pipeline, shown
in (b) and (f). (c) and (g) are both first colored and deblurred; (d) and (h) are both first deblurred and
then colored.

 (a) (b) (c) (d) (e)
Figure 5: Test results obtained for multiple pass into the deblurring model. The original blurred image is seen
in (a); followed by one, two, and three passes into the deblurring model as seen by (b), (c), and (d), respectively.
The final sharp image (ground truth) is shown in (e).

 5

results on two different blurry images obtained with batch size 2 respectively. The PSNR values we
obtained are close to the values obtained with the previous state-of-the-art deblurring models [1,14].

Table 3: Some hyperparameters and information on deblurring model training with motion blurred gray scale images.

Number of
epoch

Number of steps
per epoch

Learning
rate

Optimization
Algorithm

Batch
Size

4 2000 10-4 Adam 1 and 2

Table 4: Loss values for obtained during the training of the deblurring model.

 Discriminator on Generator Loss
Values for batch size = 1

Discriminator on Generator Loss
Values for batch size = 2

Epoch 1 2436.38 2384.23
Epoch 2 2437.05 2388.47
Epoch 3 2437.53 2382.05
Epoch 4 2437.50 2344.92

Table 5: PSNR values obtained with the default and new model for both colorful and grayscale test images.

 PSNR with Default
Weights

PSNR with New Weights
Batch Size = 1

PSNR with New Weights
Batch Size = 2

Colorful 28.2 28.6 28.8

Grayscale 28.3 28.7 29.0

Conclusion/Future

Work
Using a pretrained image
colorization CNN model
and training a deblurring
GAN model with motion
blurred grayscale images
were implemented a
pipeline that takes blurry
grayscale images and
outputs them as colorized
and deblurred images.
We were able to achieve a
slight increase in the
PSNR values of our
restored images. Due to
time constraints, we were
only able to train the
model with 1050 images
and used the weights
from the previous

implementation trained over a different set of images which were colorful as our initial weights. Training
the model from scratch using our grayscale images and with more number of images is likely to result in a
much more significant improvement in the deblurring performance. Furthermore, our model has been
trained based on motion blur grayscale images. However, as mentioned previously depending on the type
of blur the models can perform differently. One of the future implementations we would like to pursue is
to experiment with different types of blurry/noisy grayscale images and test how the model performs when
input images have different blurriness. It would be interesting to tune the model parameters for different
categories of blurry images, and evaluate the performance of colorization.

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 7: Test results obtained with two different blurry grayscale images (a) and
(e); first deblurred with the new weights for batch size = 2 we obtained through our
model as shown in (b) and (f), and then colorized as shown in (c) and (g). (d) and (h)
are the sharp, colorful (ground restored) versions of the two images. Note that (a) is
motion blurred (e) is defocused.

 6

7. Contributions
Research: Omar and Karsu
Preprocessing colorful motion blurred images: Karsu
First Implementation – Image Colorization Version 1&2 model training: Omar and Karsu
Second Implementation – New colorization model installation: Omar
Second Implementation – New Deblurring GAN model installation: Omar and Karsu
Second Implementation - Deblurring GAN model training: Omar and Karsu
Proposal/Milestones/FinalReport/Video: Omar and Karsu

References

[1] Nah, Seungjun, et al. “Deep Multi-Scale Convolutional Neural Network for Dynamic Scene
Deblurring.” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
[2] “Deblur Photos Using Generic Pix2Pix - Machine ... - Medium.” [Online]. Available:
https://medium.com/machine-learning-world/deblur-photos-using-generic-pix2pix-6f8774f9701e.
[Accessed: 23-Apr-2020].
[3] R. Zhang, P. Isola, and A. A. Efros, “Colorful Image Colorization,” Computer Vision – ECCV 2016
Lecture Notes in Computer Science, pp. 649–666, 2016.
[4] G. Larsson, M. Maire, and G. Shakhnarovich, “Learning Representations for Automatic Colorization,”
Computer Vision – ECCV 2016 Lecture Notes in Computer Science, pp. 577–593, 2016
[5] S. Iizuka, E. Simo-Serra, and H. Ishikawa, “Let there be color!,” ACM Transactions on Graphics, vol.
35, no. 4, pp. 1–11, Nov. 2016.
[6] H. Zhao, Z. Ke, N. Chen, S. Wang, K. Li, L. Wang, X. Gong, W. Zheng, L. Song, Z. Liu, D. Liang, and
C. Liu, “A new deep learning method for image deblurring in optical microscopic systems,” Journal of
Biophotonics, vol. 13, no. 3, 2020.
[7] O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin, and J. Matas, “DeblurGAN: Blind Motion
Deblurring Using Conditional Adversarial Networks,” 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2018.
[8] Ouyang, Yi. “Total Variation Constraint GAN for Dynamic Scene Deblurring.” Image and Vision
Computing, vol. 88, 2019, pp. 113–119., doi:10.1016/j.imavis.2019.05.007.
[9] R. Zhang, P. Isola, and A. A. Efros, “Colorful Image Colorization,” Computer Vision – ECCV 2016
Lecture Notes in Computer Science, pp. 649–666, 2016.
[10] A. Alekseev, “Blur dataset,” Kaggle, 29-Jul-2019. [Online]. Available:
https://www.kaggle.com/kwentar/blur-dataset. [Accessed: 09-May-2020].
[11] freeCodeCamp.org, “How to colorize black & white photos with just 100 lines of neural network
code,” freeCodeCamp.org, 12-Oct-2017. [Online]. Available:
https://www.freecodecamp.org/news/colorize-b-w-photos-with-a-100-line-neural-network-
53d9b4449f8d/. [Accessed: 07-May-2020].
[12] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville. “Improved Training of
Wasserstein GANs”. ArXiv e-prints, Mar. 2017.
[13] Guirao et al,. Deep Koalarization: Image Colorization using CNNs and Inception-ResNet-v2
[14] Sun, Jian, et al. “Learning a Convolutional Neural Network for Non-Uniform Motion Blur Removal.”
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015,
doi:10.1109/cvpr.2015.7298677.
[15] The models ware run on Google Colab. Caffe library was used for the image colorization
implementation. Keras 2.1.5 and Tensorflow 1.5 versions were used for the deblurring implementation.

