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Abstract

We use a Mask-RCNN architecture to perform instance segmentation on satellite images of regions in Western Europe, with the goal of
determining the footprint of logistics real-estate in said region. In this paper we explain the roadmap to the development of our current
model, which is trained first on images with logistics real-estate labeled by the Google Maps API, and then on images with labels added on
the basis of high confidence predictions from the first round of training. This model achieves recall of 60% and precision of 76% on our
evaluation set, in contrast with Google labels’ recall of 30% and precision of 89%, hence providing a superior tool for indicating supply in
the region.

Introduction

We propose to develop a deep learning application which detects logistics supply using satellite images to get a better indication of supply
in certain areas of Europe. Specifically, we want to get an estimate of the area of logistics real estate given satellite imagery. Hence, the
task at hand is the following: building detection using satellite imagery, followed by a building type classification (logistics vs
non-logistics). The input to the algorithm is a satellite image. We then use a neural network to output the area of logistics properties.

Related Work

Building detection from satellite imagery has been a challenging deep learning task that has attracted significant research efforts over the
last decades®. One of the most cited scientific articles related to building detection using satellite imagery is the following: "Building
detection in very high resolution multispectral data with deep learning features" by Vakalopoulou, Maria, et al. (2015). In this paper,
Vakalopoulou et al. propose a novel building detection strategy that builds upon the pre-trained AlexNet network. More specifically, they
fed the network with satellite images of “buildings” and “non-buildings”. The problem was thus formulated as a binary classification
problem. To detect building footprints, features of a specific layer of the AlexNet were subsequently used to train a SVM model.
Meanwhile, to increase the accuracy of the building boundary predictions, they embedded spectral information to the training of the
model. This strategy was also intended to optimize the detection of smaller buildings.

Previous CS230 projects focusing on building detection using satellite imagery include Syrov & Ulanov (2019) and Bhowmik, Hall, Quinn
(2018). Both projects approached the task of building classification using the Mask-RCNN model. Syrov & Ulanov additionally tackled the
problem with Conditional GAN, where the discriminator task was to recognize if the input was a real building or artificially generated. The
Generator network’s task was to fool the discriminator and also come close to the ground truth image of the building footprint.

While these previous approaches serve as a useful starting point, they do not fully comprise the scope of our task. That is, because our
task cares about not only detecting building footprint, but also detecting a specific type of building. Hence, we expect there is room to
innovate with respect to previous work.

Dataset and Features
The raw dataset consists of coordinates (longitude & latitude) relating to the location of real estate property accompanied with the
property type. The dataset is proprietary and is sourced from an institutional real estate investor. In total we have roughly 100k
coordinates, of which 10% relates to the class of interest (i.e. logistics). Using the Google Maps API, we obtain satellite images (RGB)
corresponding to the coordinates with a size of 640x640. Given the skew to negative cases in data, we had to take care in constructing a
balanced dataset to train on.

Table 1: A summary of the building types present in the entire raw dataset

Property Type |Count % of Total

Office 27,841 27.3%
Residential 35,803 35.2%
Retail 28,233 27.7%
Logistics 9,976 9.8%
Total 101,853 100%

To label the data with the positive masks (i.e. presence of logistics properties), we took the following steps:

1. As the coordinates in the raw dataset may not exactly correlate with position of the building, we performed a Google Maps
search within the region of interest using the following 'logistics' keywords: logistics service and wholesaler (as wholesalers often

' Vakalopoulou, Maria, et al. "Building detection in very high resolution multispectral data with deep learning features". 2015 IEEE International Geoscience
and Remote Sensing Symposium (IGARSS). IEEE, 2015.
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occupy the logistics properties). The Google Maps API returned all centroid coordinates of buildings which appear during the
Google search and which we assume to be logistics properties.

2. Using the Overpass APl we obtained all building edges in the region of interest and correlated these with the centroids obtained
from the Google search to retrieve our positive masks.

From the entire raw dataset, we took a subset of the coordinates as converting these to images and retrieving the Google masks was
costly beyond a certain point (Google charges the use of its API’s after a certain threshold).

Google has not labeled all logistics properties. As such, a caveat to this approach of labeling is that the Google Maps API did not return all
logistics properties. This resulted in labels having some noise (false negatives), which had its implications for training and development.
Error analysis in an earlier stage of the project showed that this caveat in labeling was significant. In a lot of cases: for an actual logistics
property, the algorithm indicated the existence of logistics — but the Google label was absent — lowering the precision where the
algorithm actually did a good job. To overcome this bias in the evaluation metric, we labeled images ourselves for validation purposes. As
the human labeling process is very time consuming, the ground truth labels for the (initial) training still originate from Google.

Another adjustment we made to the dataset is to add images of urban and rural areas containing no logistics buildings. Initially, we only
took images with logistics objects present, based on the assumption that images had enough background (e.g. farmland or other
buildings) for the model to distinguish between logistics buildings vs. background and non-logistics buildings. Error analysis, however,
showed the model still had some difficulties making this distinction. For example, the model mistakenly classified clumps of trucks as
buildings and in some instances mis-interpreted a plain field for a logistics building. Therefore, to increase the performance of our
classification model, we added images of urban and rural locations containing no logistics at all.

Table 2 below gives an overview of the final dataset used for training and validation. Note, using the human labels for validation instead
of the Google labels makes a significant difference — where Google identifies 197 objects in the validation set, a human would identify 860
objects.

Table 2: Overview of the final dataset used for training and validation

# orginal augm. # objects # objects
Set images % of total multiplier [google] [human]
Training [logistics] 5349 93% x2 9861 -
Training [non-logistics] 296 5% X3 - -
Validation [logistics] 126 2% x1 197 860
Total 5771 100% - 10.058 860

The relatively small size of the validation set is due to the fact the human labelling was very time consuming. To get a representative
validation set, we used all human labeled images in the validation set. Future work can focus on creating a sizable test set as well to get a
more unbiased estimate of model error. Furthermore, we used data augmentation to increase the size of our training set. The amount of
augmentations is indicated by the “augm. multiplier”, where x2 = a horizontal flip; x3 = a horizontal & vertical flip. Pixel values were also
rescaled from 0-255 to 0-1 to improve the performance of gradient descent.

Methods

For our baseline model, we implemented Mask R-CNN? using an open-source tutorial®>. We fine-tuned the pre-trained Mask R-CNN model
and used torchvision? to train our own dataset. Mask R-CNN, which builds upon Faster R-CNN®, is a deep neural network that is typically
used in computer vision and machine learning to solve image segmentation problems®. The model outputs object bounding boxes, classes
and masks per image input. As shown in Figure 1, there are two main stages in this neural network:

Stage 1: Generate bounding box proposals for object location within a given image (input).
Stage 2: Predict the object class, refine the bounding box, and generate a mask segmentation mask for each object instance.

2 https://arxiv.org/pdf/1703.06870.pdf

3 https://pytorch.org/tutorials/intermediate/torchvision tutorial.html

* https://pytorch.org/docs/stable/torchvision/index.html

® https://arxiv.ora/pdf/1506.01497.pdf

® https://medium.com/@alittlepain833/simple-understanding-of-mask-rcnn-134b5b330e95
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The Mask R-CNN architecture we implemented is as follows:

A backbone CNN for classification (ResNet50) with a Feature Pyramid Network (FPN)’, pre-trained on COCO
An Instance Segmentation model to identify object masks, pre-trained on COCO

A Region Proposal Network (RPN) anchor generator

A Region of Interest (ROI) Classifier to identify possible locations of objects

LEGEND

CV = Convolutional Layer
FPM = Feature Pyramid Map
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RPN = Regional Proposal Network
ROI = Region of Interest
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Figure 1: lllustration of the Mask R-CNN architecture in our implementation (adaptation®)

As shown in Figure 1, the model receives a satellite image as input. Then, a bottom-up computation of convolutional layers is used for
feature extraction. The features extracted from the last stage in each layer are then fed into a top-down pathway using lateral
connections to generate a pyramid of feature maps, which in turn, extract ROI features. Said features are of different scales and come
from different levels of the pyramid, increasing the model’s speed and accuracy®. In the next stage, the RPN uses the extracted features
and anchors to generate proposals for objects of interest. This includes an estimate of the object's bounding box. Then, a ROI Align
classifier performs intelligent re-shaping to make the images be of the same size. Finally, the proposed regions are fed into a new set of
convolutional layers to generate the object classes, bounding boxes and masks.

In our implementation, we experimented with single-class classification as well as multi-task classification by tweaking the characteristics
of the model’s classifier (please see the appendix for our data-labeling process flow). For single-task classification our classifier focused on
logistics vs background, while for multi-task classification, it focused on logistics vs non-logistics vs background. The latter did not perform
well, which is why we focused on single-task classification.

The Loss Function

The loss function on each sampled region of interest is equal to: L = Lcls + Lbox + L

mask
Where the classification loss L, is a logarithmic loss between two binary classes and the bounding box loss L, _ is a logistic regression
over the bounding box coordinates and L, ,, (normalized between 0 and 1) is the average binary cross entropy loss between the ground
truth mask of an object and the predicted segmentation mask. It should be noted that L, and L, are taken from the Fast RCNN®

model.

box

7 https://arxiv.org/pdf/1612.03144.pdf

8 https://medium.com/@alittlepain833/simple-understanding-of-mask-rcnn-134b5b330e95
® https://arxiv.org/pdf/1703.06870.pdf

"0 hitps://arxiv.org/pdf/1504.08083.pdf
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Experiments/Results/Discussion

Evaluation Metrics:
Considering that we care about getting an estimate of the area of logistics real estate in a certain region: we have specified our evaluation
metric as the Fl-score regarding the logistics area. More specifically:

Logistics Area (Labeled) N Logistics Area (P redicted)
Logistics Area (Labeled)
Logistics Area (Labeled) N Logistics Area (P redicted)
Logistics Area (P redicted)

_ . Recall - Precision
® Flscore=2 Recall + Precision

® Recall =

® Precision =

Where the Logistics Area (Labeled) relates to the human labeled masks and the Logistics Area (Predicted) to the masks predicted by the
model. Hereby, we only take into account predictions where the classification probability exceeds the confidence threshold of 0.5.
Moreover note that, by focussing on the logistics area, we penalize the model more for missing larger objects and less for missing smaller
objects. Lastly, to get a better feel for the validation set —in the 126 images roughly 7 million pixels were labeled as logistics, translating to
a prevalence of 14% with respect to all pixels in the set.

Hyperparameters:
® Optimizer: we used stochastic gradient descent with momentum and weight decay. Stochastic gradient descent was chosen as
our computational resources did not allow to process multiple examples at once.
® learning rate: started at 0.005, shrinks with factor 10 every 3 epochs. We shrink the learning rate to converge using Stochastic
gradient descent.

Results and Discussion: We investigated the performance of four models in our implementation. We started with a baseline model and
each subsequent model aimed at improving issues identified during error analysis of its predecessor. In all our models, we stopped the
training when we observed that the validation performance started decreasing. In our error analysis, we used results from the previous
checkpoint (epoch). The results of our three models are summarized in Table 3 below:

Table 3: Results from Mask R-CNN model iterations to predict Logistics Buildings vs Background

Model Name Model Description Recall Precision F1 Score
0 Existing Solution (Google labels) 30% 89% 45%
1 Pretrained Mask RCNN (no fine-tuning) 86% 16% 27%
2 Baseline model (finetuned Mask RCNN) 52% 79% 63%
3 Relabeled input (minimize incorrect labeling) 60% 72% 65%
4 Relabeled input and more non-logistics buildings 60% 76% 67%

As shown in Table 3, the Existing Solution (Google Labels) has a low recall percentage (30%), but high precision (89%). The low recall value
stems from the limitation that the Google Maps API has not identified all logistics properties, leading to false negatives in the labelling
process. We started by training Model 1 and Model 2 with this limited set of image labels provided by the Google API to leverage their
high precision.

In Model 1 we ran experiments using the pretrained COCO weights. As expected, the model performed poorly with a F1 score of 27%, as it
is trained to detect other objects (e.g. cars, people, animals). The high recall, yet poor precision, indicates the model is detecting a lot of
logistics slightly better than random (prevalence of logistics area is 14%, where the model has a precision is 16%). To improve the model’s
precision, we finetuned the model on logistics images.

Model 2 reflects those changes, with an increased precision of 79% and detecting more than 50% of the labeled logistics area. Despite the
limitation of having false negatives in our training set, error analysis and the fact that the recall is better than that of the Google Labels

4
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show that Model 2 can identify more logistics buildings than the Google API (as shown in Figure 2). The model can also accurately
distinguish between logistics and non-logistics buildings (e.g. residential). However, the model still has difficulties with contrasting
rectangular shapes — for example, in figure 2 it can be seen how Model 2 mis-interpreted tennis courts, a soccer field and a swimming
pool for logistics.

O Google Label

@ confident prediction (p>0.50)
O Low confident prediction (p<0.50) |eas

Figure 2: Examples of Model 2 output; identifying more logistics than Google (left); misclassifying large contrasting rectangles (middle);
distinguishing between residential and logistics (right). Note that magenta and green annotations were added for illustration purposes.

In Model 3, we improved our model’s performance even further and reduced the number of false negatives. To achieve this, we fed back
into the training set a number of re-labeled cases on which Model 2 gave high probability of being “logistics” — with a confidence
threshold of 50%. As in the validation set Google’s recall was 30% and the baseline model had a recall of 52%, it is reasonable to assume
that relabeling the training set in this way, the number of false negatives would be reduced. And as expected, the recall of Model 3
increased with 8% to 60%. However as the precision of the baseline model was lower compared to the Google Labels, relabeling the
training data introduced other incorrect labels — being false positives. Hence, we see the precision of Model 3 decreasing due to false
positive labels. Overall, looking at the F1 score, the Model 3 has a better performance compared to its predecessors

In Model 4, our goal was to minimize classification errors (e.g. tennis court example) by training the model on more urban and rural
images with no logistics present. The model performance increased as expected — w.r.t. Model 3, this model has the same recall yet
improved its precision with 4%..

Conclusion/Future Work
While our model’s performance is already an improvement over Google’s labeling of logistics buildings, the following are steps we would
wish to take to further improve it.

e Hyperparameter tuning — in particular, we wish to experiment with the confidence threshold we use to relabel our data to
decrease Google’s incorrect non-labeling of logistics buildings, without introducing many mistakes by mis-labeling non-logistics
buildings

e Continue with several more iterations of the cycle of feeding in confident predictions as labels into our model, until we reach
approximate convergence

® Increasing batch size for stochastic gradient descent to ensure that training converges

e Experimenting with UNET", an image segmentation architecture which outputs predictions for each pixel in the image

e Training on more data, and experimenting with different data distributions. In particular, does our model systematically make
better predictions for certain areas of Western Europe? And, in our eventual real-world use case, what type of test set
distribution would we expect to see? Answers to these questions will inform us of biases in our current training set and how to
correct for them.
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Appendix

In terms of defining the dataset, we modified our data to fulfill the requirements of the model. To that end, we fed into the model two
sets of images:

1. Unlabeled Data: Satellite images containing various mixes of logistics buildings, non-logistics buildings, and background (PNG
format);

2. Labeled Data: Satellite images with segmentation masks (logistics buildings vs background). Different colors represent different
object instances.

Unlabeled Data Labeled Data Segmentation Mask

Figure: Labeling data and creating the segmentation masks; This is an example of non-logistics buildings.



