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Abstract 

Although the protection of children’s online privacy is 
widely agreed to be sacrosanct, children everywhere have 
personally identifying photos uploaded to the internet every 
day by their parents and other sources. The researchers 
created KiDINet, an end-to-end pipeline that collects 
photos and returns images with the faces of all minors 
deidentified. The pipeline includes a face detection model 
based on faced, an age detection model architected by the 
researchers based on VGG-Face, and a facial swapping 
stage using FSGAN. The age detection model performed 
well with minor identification on the validation set, 
reaching a 90% F1 score; however, end-to-end evaluation 
yielded a minor face deidentification success rate below 
20%, due to a more diverse test set and error compounding. 
The project shows promise that deep learning models may 
be used to protect the privacy of children online without 
manual censoring one day. 
 

1. Introduction 
Every day, tens of thousands of pictures of children are 

uploaded to the internet. Sharenting, when parents share 
information about or photographs of their children on their 
own personal social media accounts, causes many 
problems. Barclays has predicted that by 2030 sharenting 
will account for ⅔ of identity fraud [1]. Another issue is 
virtual kidnapping, where seemingly innocent photographs 
of children, posted on social media accounts are used to 
create pornography. An unofficial survey of an online 
child pornography site by the Australian government 
found that about half of the millions of images on the 
website were sourced directly from social media [2]. 
Sometimes posted photographs of children are used for 
bullying by peers. Many child advocacy groups have also 
raised the concern about preserving digital autonomy for 
children and the need to give them a say in what is posted 
[3].  

Many parents attempt to solve these problems by 
manually editing images by placing an emoji over a 
child’s face to protect their identity. However, this method 

is time consuming and creates an image that is unnatural 
looking and has clearly been edited. KiDINet is a 
proposed method to de-identify the faces of minors in 
photos using neural networks that replaces the faces of 
minors with a natural looking substitute. KiDINet works 
by connecting three models that each perform a specific 
task: 1. Face detection 2. Age and gender detection 3. Face 
de-identification. This is the first attempt to we have seen 
to create an end-to-end solution for this specific task and 
provide parents with a simple and safe way for parents to 
share pictures that include children while protecting their 
children. 

 
1.1. Related Works 
 

We have not found any other solutions to this particular 
issue, but there has been a lot published on each of the 
pieces of our solution. Some of the previously used 
methods for each of the sub-tasks are described below.  
 
1.1.1 Face Detection 

The history of facial detection is closely intertwined 
with the history of generic object detection. In 2004, Viola 
and Jones (VJ) built a model that used Haar-Like features 
and AdaBoost, creating the first practical face-detector. 
Later papers built on Viola and Jones using Histogram-
Oriented Gradients and Scale-Invariant Feature Transform 
features for human detection. Real-time performance 
arrived with the use of deep convolutional neural 
networks, namely Regions with CNN features. Popular 
algorithms that employ this approach include the Single 
Shot Scale-invariant Face Detector proposed by Zhang et 
al. and Single Stage Headless Face Detector by Najibi et 
al. The latest advances include neural networks that utilize 
the YOLO model, an object detection algorithm that uses 
anchors and grids [4]. Even with YOLO, researchers are 
still grappling with the tradeoff between speed and 
accuracy, capturing faces at varying scales, and detecting 
faces with obscuring objects like sunglasses or scarves. 
 
1.1.2 Age and Gender Detection  

The first use of a CNN for age estimation and gender 
classification was performed by Yang et al. in 2011. Dong 
et al. overcame the problem of lacking labeled training 
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images through Deep ConvNets, which used transfer 
learning to extract high-level age features. Later, Levi and 
Hassner used a shallow CNN to classify faces into 8 ages, 
reducing computational load and complexity with limited 
performance loss [5, 6]. However this network was trained 
on a small dataset, only about 2000 different people and it 
only had only an 80% accuracy. Smith et al. created a 
network with higher accuracy using transfer learning from 
VGG-19 [7]. We attempted to create a network that 
followed the same outline as the one described in Smith et 
al.  
 
1.1.3 Face De-Identification  

Early approaches to face de-identification included k-
anonymity models, which replaced a face with a substitute 
that was the average of the closest k identities computed 
from the same set of images. Jourabloo et al. used Active 
Appearance Models to manipulate facial attributes until a 
facial verification classifier recognizes the two images as 
separate subjects. The application of generative neural 
networks to face de-identification is newer. In 2017, 
Meden et al. used GNNs to create a unique face using just 
a handful of appearance-related parameters like skin color 
and gender [8]. Modern techniques include facial attribute 
replacement (replacing some facial attributes, like a nose 
or mouth, with attributes from consenting donors), while 
retaining facial expression and realistic features [9], or 
using a GAN to generate full faces for replacement 
[8]. These models need to balance maintaining realism in 
the facial images while effectively de-identifying faces. As 
research in these areas continues, we will be able to update 
our pipeline to take advantage of state-of-the-art de-
identification techniques. 
 
1.2. Methods  
 

Our pipeline takes in photos with multiple faces and 
returns a photo with the faces of minors in the photo de-
identified. This is accomplished through connecting four 
separate models to perform the desired task shown in 
Figure 1. Model 1 detects the location of every face in a 
photo; Model 2 identifies the gender of each face; Model 3 
identifies the age of the face; Model 4 uses the age and 
gender to select a donor face for each minor and swap the 
minor’s face with that of the donor.  

 
Figure 1: The entire KiDINet network, showing all of the steps of the 
pipeline 
 
1.3. Models  

 
1.3.1 Face Detection  

Our facial detection algorithm was based on faced[10], 
an open-sourced variant of YOLO that specializes in face 
detection, as opposed to multi-class detection. Faced is an 
open-source ensemble of two convolutional neural 
networks. The first neural network, called the Face 
Detector, breaks each image into discrete mini-boxes, 
predicting the probability of a face in each. The second 
neural network, called Face Corrector, is designed to take 
the output of the first network and return the face 
bounding box. The faced implementation is based on 
YOLO, but can achieve real-time performance on a CPU 
through model simplification 
1.3.2 Gender Detection  

For this project we have started with an implementation 
of the model designed by Tal Hassner and Gil Levi [11]. 
This model is comprised of 3 convolutional neural 
networks and 2 fully connected layers.  
1.3.3 Age Detection  

We designed our own age detector based on the work of 
Smith et al [7]. We started with the VGG-Face network 
trained on the VGG-Face database [12, 13] without the top 
layers. We replaced the original top layers with three fully 
connected layers of our own. In our final network the first 
two fully connected layers had 1024 hidden units each 
followed by a ReLu activation function. The final layer 
produced a single value and had no activation function as 
shown in Figure 2. The VGG-Face layers were frozen 
during training and so retained their original values.  

 
Figure 2: The layers we built that replace the top layer of the VGG-Face 
network. 

 
1.3.4 Face De-identification  

We implemented the FSGAN model to exchange the 
original face in the picture with a donor face [14]. FSGAN 
is a state-of-the art model that uses a series of networks 
(among other techniques) for face detection, face 
reenactment, face generation (for occluded images), and 
facial blending (to account for differences in lighting and 
skin tone). FSGAN can be applied to faces that it has not 
been trained on, which is important for our use 
case.  While we originally planned to replace the true face 
of each minor with a generated face, recent thinking 
suggests that face generation is overkill for de-
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identification. Instead, we swapped these faces with those 
of existing child faces from our age-detection dataset. Our 
decision dramatically reduced the time to implementation, 
since training a GAN to generate low-resolution child 
faces would likely take weeks or months [15]. 
 
1.4. Hyperparameter tuning 

 
We tested three different types of loss functions for our 

age detector. We tested a binary model (two possible 
outcomes of minor/not minor) with a cross-entropy loss 
function, a model that placed the ages into 4 different bins 
((0,8), (9-15), (16,25), and (26, 100)) again using a cross-
entropy loss function. And a final regression model that 
used a mean squared error loss to return the age as a single 
number.  

We could calculate the minor accuracy during training 
but the F1 score had to be calculated afterwards.  After 
initial training both the binary and the continuous versions 
were able to attain 97% accuracy on detecting minors so 
we chose to use the continuous model with the mean 
squared error loss since it also provided us with an 
approximate age that we used to identify the most 
appropriate donor image.  

The final loss function that we used in the final model 
was a mean squared error loss function: 

𝑀𝑆𝐸 =
1
𝑚'(𝑦!"#$ − 𝑦%"&#+

'.
(

)*+

 

However, we evaluated our performance on two 
different measures, the minor accuracy, or accuracy of 
predicting whether a face belonged to a minor and the F1 
score. Due to the facts that we were using a regression 
model, and that TensorFlow does not allow the use of 
conditional statements in calculating metrics, calculating 
the minor accuracy was challenging. We calculated it in 
the following way:  
 

𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 =
1
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𝑚𝑖𝑛𝑜𝑟	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑡𝑟𝑢𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

We calculated the F1 score after training using the 
following formula:  
𝐹1 =	

2 ∙ 𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑣𝑒
2 ∙ 𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒. 

We chose to measure the success of the model using the 
minor accuracy and F1 score because the most important 
goal of this model is to correctly identify models. We 

compared the F1 score and the mean squared error after 
each epoch during training for each experiment as shown 
in Figure 3. We believe that this figure justifies our use of 
the F1 score in place of the MSE because especially for 
high F1 score and low MSE, the values are clearly 
correlated.  

 
Figure 3: The relationship between the loss function (MSE) and the F1 
score for minor identification 
 

In order to identify the optimal values for other 
hyperparameters, we performed a simple grid search. We 
tested four different values for the learning rate (1e-2, 1e-
3, 1e-4, 1e-5) and the size of the two dense layers (32, 64, 
1024, 2048) For each experiment we trained the model for 
5 epochs. The results, as shown in Figure 4, show that a 
learning rate of 1e-3 with a hidden layer size of 1024 
produce the highest F1 score.  These results are similar to 
those seen by Smith et al. which we expected since our 
models are very similar.  

 
Figure 4: Heatmap showing the results of the hyperparameter 
experiments. The highest value corresponds to a dense layer size of 1024 
and a learning rate of 1e-3 

While we recognize that a more comprehensive search, 
using a random search instead of a grid search, and 
experimenting with different hyperparameters like dropout 
rate, and batch size, might have yielded even better results, 
but we were limited by time constraints because each 
experiment took approximately 20 minutes to train. After 
choosing the final parameters we trained the final model 
for 10 epochs. 
 
1.5. Datasets  
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Each of the three parts was trained independently on a 
different dataset. This is largely unavoidable since each of 
the steps consists of a professionally designed pre-trained 
model. Faced was trained on the WIDER FACE dataset of 
nearly 400,000 faces across 32,000 images. This dataset 
includes a diversity of face scales, poses, occlusions, 
expressions, and makeup [16]. The gender detector was 
trained on the Adience dataset which contains 26,580 
photos of 2,284 subjects collected from Flickr albums, the 
photos are labeled in age ranges listed above. Roughly 
46% of the images were of males and 52% were of 
females (2% of the images did not specify gender) [17]. 
Some data augmentation was done to the original Adience 
dataset including rotation of the images, lowering the 
resolution of the image, and darkening and lightening the 
image. FSGAN was trained on multiple datasets including 
IDB-C, VGGFace2, CelebA, LFW Parts Labels, Figaro, 
and FaceForensics++ datasets. We trained our age detector 
on the cropped and aligned UTKFace dataset [18]. This 
dataset is comprised of over 23,000 facial photos with 
15.4% being below the age of 15 (minors), 52% being 
male, and a racial distribution of 42.5% white, 19.1% 
black, 16.8% Indian, 14.5% Asian, and 7.1% other races. 
We used testing and validation sets of 1,000 images each 
with the remaining images in the training dataset. Donor 
faces used for deidentification were also chosen from the 
cropped and aligned UTKFace dataset [18].  

Since all three of the models were trained separately, 
we created a separate dataset for testing our complete 
model. Since our model is designed to be used by parents 
posting pictures on their social media page our dataset is a 
collection of images, all available on the internet, 
comprising family pictures, Instagram posts from public 
accounts, and pictures from news articles. There is a mix 
of profession and amateur photography.  
 
1.6. End-to-End Testing 

 
Upon completion of our end-to-end system, we 

performed a test against 100 unlabeled family photos 
curated from Pinterest and Google Images, comparing the 
output of our system against a human grader’s. For every 
test photo, we assessed the undetected minor faces, 
miscategorized minor faces that were labeled as adult 
faces, and the quality of the swapped face. First, we 
investigated the accuracy of our age detection model 
within the overall system, assessing the share of detected 
faces that were accurately classified as minor faces. 
Second, we evaluated the end-to-end success rate of the 
system, which we defined to be the percent of minor faces 

that were swapped with another face that was both 
realistic and anonymized well. We evaluated authenticity 
on a scale from 1 to 3, ranging from faces that were (1) 
very unrealistic (e.g. cartoonish, missing entire facial 
features, visible stitching borders) to (3) believable at first 
glance. We also assessed the anonymization of the photos, 
ranging from (1) immediately identifiable to (3) 
unrecognizable. We defined the success rate as the % of 
minor faces that were detected, classified as minor faces, 
and swapped with a face that was both realistic and 
anonymized. 
 
2. Results 

 
Because much of our work was focused specifically on 

the age detection portion of our network, we evaluated that 
portion of the network separately from the full end-to-end 
pipeline. After testing both a binary (actually a two-class 
softmax) and a continuous output, we decided to use a 
continuous output for age estimation. Because of this 
choice we used Mean Squared Error as the loss function of 
choice for our training. Evaluating on our test dataset we 
found the Mean Squared Error to be 48.89. 

In the output, however, we were most interested in the 
detection of minors (not true age estimates), so we tuned 
hyperparameters and ultimately evaluated our model based 
on the binary decision of whether a face belongs to a 
minor. Our results based on binary minor selection are 
shown in Table 1: 

Table 1: Results of Age Detector on test dataset based on binary minor 
selection 

 
 

Overall, we were fairly satisfied with our results, with 
the accuracy of minor detection reaching 97% and an F1 
Score of over 90%. 

One interesting phenomenon we observed wile training 
was that the validation loss was consistently lower than 
the training loss as shown in figure 5. This is the opposite 
of what we would expect. We would have to do further 
analysis on the errors to understand exactly what caused 
this, but we assume that the validation set contained 
images that were easier for some reason for the model to 
interpret. 

In order to determine the most important areas of 
improvement of our system, we evaluated the both the age 
detection model and the overall system performance 
against 100 unlabeled test photos (see Appendix 1). The 
human grader identified 328 total faces, and 190 minor 
faces in the dataset, whereas the system detected 303 faces 
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and 77 minor faces. Of the 113 missed minor faces, 27 
were undetected by the face detection module and 86 were 
miscategorized as adult faces. The F1 Score for minor 
detection was 88%. Surprisingly, the precision of minor 
classification was 100%, meaning that there were no adult 
faces that were categorized as children’s faces. Out of 190 
minor faces, only 15 were successfully deidentified with a 
realistic, anonymized face, meaning an end-to-end success 
rate of 7.9%. 

 
Figure 5: MSE for the training and validation sets shown for each epoch 
of the final training. Note that the validation dataset has a consistently 
lower error than the training dataset. 
 
3. Discussion 

  
The end-to-end evaluation of KiDINet suggested that all 

3 individual stages stand to improve. Our face detection 
module in particular tends to miss baby faces. Future work 
should use transfer learning with more labeled baby face 
data in order to improve the detection accuracy of these 
baby faces. This will likely be challenging, given the 
limited availability of labeled baby face data in public 
sources. Data augmentation may help with this limitation. 

The age detection stage needs the most improvement. 
76% of the minor faces missed by the system were 
misclassified as adults. Given that the system failed to 
identify a single adult face as a child’s face, we believe 
that the model biases older in its age determination. We 
believe that this could be improved by further 
oversampling minor faces in the dataset, or adjusting our 
loss function during training to track minor detection 
accuracy instead of the mean squared error of age 
estimate. We also built our age detection model based on 
centered and aligned examples, but the real-world inputs 
fed to our model were not properly centered or aligned. 
Improving this in the pipeline will help to improve 
outcomes. Manual error analysis revealed that there were 
specific circumstances in particular that the model 
struggled with. These include highly angled faces, faces 
partially occluded by sunglasses or other objects, and 
crowded photos with several smaller faces (see Appendix 
2). Future work should dig deeper into the model 
engineering to determine why the ages of these faces are 
systematically overestimated. Human-grading also 

revealed to us that using image data alone to evaluate a 
person’s age has a maximum possible performance. Our 
human grader struggled on several occasions to determine 
whether or not an individual’s face belonged to a minor or 
a young adult, a phenomenon well-documented in the 
literature [19]. To achieve optimal performance, the 
system would need to secure information from sources 
other than the image data, such as the subject’s birthday 
from social media accounts.  

Manual inspection of the final output images of face 
deidentification yielded disappointing results. Of the 77 
detected minor faces, the model only returned 15 faces 
(19.5%) that were determined to be realistic and 
anonymized according to the human grader. The most 
common issues were deep facial discoloration and 
unusually beady eyes. While these issues could be 
mitigated by incorporating race into the donor face 
determination and enhancing the FSGAN model, we posit 
that face generation might simply be surfeit engineering in 
this case, when simply blurring a face or swapping with a 
cartoon baby face or an emoji would do. Future work 
should collect feedback from prospective parent users to 
determine if this additional engineering work could be 
bypassed in an initial product release. 

Given the issues highlighted above, our system may not 
be ready for some time for family photos in which the 
faces of the subjects are at the center of attention for the 
image viewer. However, the system could be more 
effective in applications where individual faces are of 
lower visual importance, such as news photos and videos. 
 
4. Conclusions 

 
We have been able to demonstrate that deep learning 

technology makes it possible to protect minors’ privacy on 
the internet without human involvement. KiDINet is the 
first end-to-end minor face detection and deidentification 
system, built by connecting together existing deep learning 
networks with our own age detection neural network. 
Although our current end-to-end success rate was low, by 
further tuning our age detection algorithm and making 
some modifications in our facial deidentification 
approach, we are confident that a commercially viable 
product is possible. We are hopeful that the availability of 
this technology for use in press photography and, social 
media sharenting will help usher in a new era of children’s 
online privacy. 
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5. Contributions 
We feel that the work was fairly and evenly divided 
among our group members.  
Writing:  
We worked together to outline the paper and create a 
storyboard for the video. While each of us contributed to 
all parts of the paper, each person focused on the portion 
of the paper corresponding to the part of the project they 
performed. With Akhil writing the Related works, the part 
of the Results detailing the complete KiDINet pipeline, 
Discussion, Conclusion and Abstract. Isaac wrote the 
portion of the Results relating to the Age detector, and 
description of FSGAN, and wrote and recorded the video. 
Laurel wrote the motivation and the methods sections and 
made the system diagrams.  
Programming: 
Akhil: Implemented FACED network, worked with Isaac 
to develop the completed pipeline, and helped Laurel 
develop the framework for testing hyperparameters for the 
age detector and performed the analysis of the completed 
KiDINet pipeline. 
Isaac: Implemented the FSGAN network, worked with 
Akhil to connect all of the parts and complete the pipeline, 
created the transfer learning portion of the age detection 
network. Compiled the final test results for the age 
detector and added that network to the pipeline. 
Laurel: Implemented the original age and gender detectors 
and implemented the binary and regression versions of the 
age detection network building on Isaac’s transfer learning 
work. She worked with Akhil to develop the softmax 
classification version of the age detection network. 
Worked with Akhil to develop the framework for testing 
the hyperparameters, and performed the hyperparameter 
testing, and then compiled those results and performed the 
final training of the age detection network.  
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Appendix 1: End-To-End System Evaluation 
 
Sample of Human Grader Evaluation 

 
Summary of Results 
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Appendix 2: KiDi Output Examples 
 
Successful Minor Face Detection and Deidentification 
Examples 

  
 

 
 
 
Unrealistic Minor Face Deidentification Examples 

 

 
 


