
Ethan Curtis 

Final Project Report 

https://github.com/ethancurtis/Basis-Set-Superposition-Error-cs230/ 

Problem Statement 

In quantum chemistry, molecular wavefunctions are represented as a linear combination of 

hydrogen-like wavefunctions (orbitals) centered on each atom. The reduction in dimensionality from the 

formally infinite dimensional Hilbert space of the molecular wavefunction to a finite basis set introduces 

some error into the energy of the wavefunction, known as basis set incompleteness error (BSIE). 

Reaction modeling often deals with multiple molecules in close proximity. If one were to acquire the 

perfect BSIE correction for energies of single molecules and apply it to a real chemical system of several 

molecules, one would find that the correction is no longer perfectly accurate! This effect is known as 

basis set superposition error (BSSE). Electrons on one molecule are borrowing unoccupied orbitals on 

other molecules to effectively expand their basis set beyond the basis set for the isolated molecule (and 

lower the energy). This effect is unphysical because increasing the basis set size localizes these electrons 

back onto their respective molecules. The result of BSSE is to overestimate the strength of interaction of 

two nearby molecules (or even nearby parts of one large molecule), which can be problematic for 

studying chemical reactions. Designing a BSSE correction for a small basis set would allow for 

simulations to use that small basis set (allowing them to run more quickly) and still obtain accurate 

results. 

Background 

Boys and Bernardi defined a basis set superposition error (BSSE) correction for pairs of 

molecules (Boys and Bernardi Counterpoise, or BBCP).1 For each molecule in the system, they calculated 

the energy of the isolated molecule with that molecule’s basis set, and with the basis set for the entire 

system. The difference between these two quantities is the BSSE (the stabilization derived from 

accessing another molecule’s basis set). Jensen extended this work for BSSE involving any two atoms, 

not just two separated molecules.2 However, these calculations are often too time-consuming to be 

practical because they require many wavefunction calculations. In 2012, Grimme and Kruse developed a 

fast empirical method for estimating BSSE based on parameterization of a simple atom-pairwise orbital 

overlap model.3 They named it geometric counterpoise (gCP) because it only depends on the geometry 

of the molecule and a set of parameters. Grimme and Kruse fit their empirical correction to the Boys and 

Bernardi correction for a set of 66 dimers (with 8 geometries per dimer for a total of 528 data points). 

This model has four parameters per choice of method and basis set. These parameters were fit to a 

dataset containing 528 data points. The small size of the parameter set and training set for the state-of-

the-art suggests that there is much to be gained from a large dataset machine learning approach. 

Dataset 

One of the key contributions of this project is the construction of a dataset of non-covalently 

bound small molecule dimers. Simplified Molecular Input Line Entry System (SMILES) strings encode 

chemical structures in text strings.4 The GDB-115 and GDB-136 datasets provide lists of SMILES strings for 



small, drug-like molecules (containing elements H, C, N, O, F, S, and Cl). All the molecules containing 11 

or less heavy elements (not H) were concatenated into a list of 42,569,450 SMILES strings. To convert 

the SMILES strings into XYZ coordinates of molecules, the rdkit Python package was employed. From this 

text file, two strings are drawn at random and converted to XYZ coordinates (due to the expected size of 

my dataset, I am not concerned about the chance of choosing the same two molecules twice). The 

molecules are fed into Packmol,7 a program which takes in the two sets of XYZ coordinates and produces 

a single set of XYZ coordinates containing the dimer (with the molecules randomly oriented). The dimer 

geometry is optimized by Amber,8 a molecular mechanics package. The data set is augmented by 

repeating the coordinates → Packmol → Amber process 4 times, producing 4 unique dimer geometries 

for each pair of molecules. Finally, the coordinates are ready for labeling.  

For this project, BBCP is calculated with Hartree-Fock theory (HF) and the MINIS9 basis set. BSSE 

depends on the choice of theory and basis set, so any correction (empirical, NN, etc.) will need to be re-

trained for each choice of theory. HF/MINIS was chosen as the method to be studied for this project 

because it seems to be a promising compromise between speed and accuracy, provided that its 

substantial BSSE can be corrected,3 and gCP parameters for this method already existed. TeraChem10, 

11 was used to calculate the energies of the dimers to determine the BSSE. About 1% of the structures 

fail to be chemically reasonable, and these are removed by comparing their energies before and after 

the Amber geometry optimization (extremely large energy changes during optimization indicate 

problems with the geometry). Statistics for the datasets are given in Table 1.  

Table 1. Size, average, and standard deviation of the train, dev, and test sets.  

Dataset Size Average (kcal/mol) St. dev. (kcal/mol) 

Train 138326 1.660 0.988 

Dev 4970 1.674 0.926 

Test 4974 1.646 0.868 

 

Extension of prior approaches  

The contribution of this project is twofold: to produce a dataset of molecular dimers, and to 

create a neural network capable of estimating BSSE. A direct comparison between gCP and a neural 

network trained on my database is deceptive because the neural network enjoys the advantage of a 

much larger and more diverse training set. Therefore, I reimplemented gCP in C and wrote an Adam 

optimization driver for gCP. The gCP correction takes substantially more time to run than a neural 

network, so the gCP model was trained for 3 epochs. After each epoch, the parameters were saved and 

the performance of those parameters was recorded. Parameter 2 was prevented from going below 

0.001 due to numerical instability issues.  

Table 2. Comparison of performance and parameters for gCP before and after parameter optimization.  

 Dev MAE (kcal/mol) Parameters 

gCP from ref. 3 0.5613 0.129000 1.152600 1.154900 1.176300 

gCP, epoch 1 0.2362 0.284139 0.001000 1.171643 1.064862 

gCP, epoch 2 0.4231 0.040156 0.002068 1.395729 0.814701 

gCP, epoch 3 0.4347 0.054609 0.001000 1.678147 0.753614 



Optimizing the gCP parameters improves performance from about 40% mean relative error 

down to 16%. All three sets of optimized parameters outperform the default values, even though the 

three sets of optimized parameters vary wildly. This observation suggests that the parameter 

optimization is operating on a flat surface. The gCP correction contains two additional sets of 

parameters which were estimated empirically and held fixed during the optimization. Optimizing over 

these parameters as well may introduce some contours on the surface which allows for convergence to 

some minimum.  

Code for this section can be found in the gCP folder.  

Neural network architecture and discussion 

 Message-passing neural networks (MPNNs) are a subset of graph neural networks (Figure 1). 

Messages are composed of some attributes describing an edge and its two vertices. For this project, the 

messages are a tuple containing a distance between a pair of atoms, one from each molecule in the 

dimer, (edge) and a one-hot encoding of the atomic number for each of the two atoms (node). To limit 

the number of messages per dimer, all atom pairs further than 9 Angstroms apart were neglected.  

The node block updates the vertex embeddings using the messages, and the global block 

embeds the messages. The embedded messages are now in a form which is independent of the size of 

the molecule and which can be used as input for later layers of a neural network. The design of MPNNs 

can be split into four parts: the content of the message (edge block), the vertex embeddings (node 

block), the process of embedding and pooling all the messages for each graph (global block), and the 

design of deeper layers after the global block.  

   

 

Figure 1. The base MPNN model. The messages are composed of the atomic numbers for the two atoms 

(A and B) and the distance between them. Depth indicates the length of the embedding vector.  



 The base model MPNN is shown in Figure 1. It is meant to be the simplest implementation of a 

MPNN. The node block is a single linear/ReLU layer, which feeds into the global block. The global block 

embeds each message into a 10-dimensional vector via a single ReLU layer. All the messages for each 

molecule are added up, producing one 10-dimensional vector per molecule. I denote all layers after this 

step to be the “graph block,” since they operate on vector embeddings of the entire graph. In the base 

model, the graph block is one last ReLU layer, followed by a linear layer which reduces the vector to a 

scalar, the predicted energy.  

It should not be surprising that variance for these models is low because the train, dev, and test 

sets are produced in the same way. While it is of interest to eventually test this model on molecules 

outside this test set, that transfer learning problem remains a future direction. This project focuses 

instead on minimizing bias through adjusting the network architecture. The base model was 

methodically augmented, and results are reported in Table 1. No model was optimized for more than 

200 epochs, because the cost had converged to three decimal places by then and further optimization 

was not worth the time.  

Table 3. Results and descriptions of the neural networks trained for this project. Mean absolute error 

(MAE) is given for the train set and for the dev set in kcal/mol and is taken from the epoch with the 

lowest dev MAE. 

# Description Train MAE Dev MAE Epoch 

1 Base model 0.2400 0.2098 149 

2 Added additional Linear/ReLU layer in node block 0.2344 0.2049 115 

3 Added additional Linear/ReLU layer in global block 0.2394 0.2073 178 

4 Doubled depth of embedding vectors (10,10,5 to 20,20,10) 0.2261 0.1917 193 

5 Added Linear/ReLU layer (depth 10) to start of graph block 0.2504 0.2211 166 

6 Replaced ReLU activations with sigmoid 0.2433 0.2147 125 

7 Added Linear/ReLU layer to node block and to global block 0.2342 0.2020 190 

8 Took model 5, added Linear/ReLU layer to global block 0.2267 0.1925 197 

9 Took model 4, added Linear/ReLU layer to global block 0.2234 0.1898 187 

10 2 Linear/ReLU layers in node, global, and graph blocks 0.2268 0.1940 198 

11 Added 2 additional Linear/ReLU layers to global block 0.2323 0.1976 187 

12 Changed depth of embedding vectors to (30,20,10) 0.2146 0.1798 154 

13 Took model 3, replaced ReLU activations with sigmoid 0.2449 0.2139 197 

14 Took model 12, added Linear/ReLU layer to global block 0.2181 0.1823 176 

15 Took model 3, replaced ReLU activations with tanh 0.2409 0.2101 166 

 

 For all models, the train MAE is higher than the dev MAE. This is because the train set has a 

higher standard deviation than the dev set. The increased spread of the data (and likely a few outliers) 

decreases performance on the train set relative to the dev set. In general, all models have a (Train MAE 

– Dev MAE) of about 0.03 kcal/mol, which indicates that variance is low. Model 1 is the base model 

shown in Figure 1, and models 2-6 alter one component of the design of model 1.  

 Models 7-15 combine the elements tested in models 2-6: increasing the depth of a particular 

block, increasing the size of the vector embedding, and changing the activation functions. Of these 

elements, adding a layer to the node block or global block and increasing the size of the embedding 



vector were most effective (see models 2, 3, and 4), so those elements were incorporated into all the 

models in the next generation. In general, adding layers seems to have a marginal benefit (compare 

models 8 and 9 to models 5 and 4, respectively) and changing the activation function from a ReLU 

worsens performance (models 13 and 15).  

 The most important component of neural network design for this project is the depth of the 

embedding vectors. Embedding the messages into very long vectors produced the two most accurate 

models (12 and 14). Interestingly, adding additional layers onto models with large embedding vectors 

did little to improve performance (compare model 4 to model 9 and model 12 to model 14). The success 

of these deep embeddings may be explained by examining the functional form of gCP. The contribution 

of a single bond in gCP (analogous to a single message in the MPNN) is a function of the distance r, given 

as f(r) = 𝑒−𝛼𝑟

√𝑠𝑎𝑏 ∙ 𝑁𝑏
⁄ , where α is a parameter, sab is an overlap integral of slater type orbitals 

centered on the atoms a and b, and Nb is a parameter based on atom b. Expressing a complicated 

function like this using a series of linear/ReLU layers on a vector would require either a very large 

number of layers or a very long vector, which explains why adding layers to the global block and 

increasing the size of the embedding vector seem to improve performance.   

 When training neural networks, one tends to reach a point where the model begins to overfit 

the training set and dev set performance declines. Many of the models here achieved their best 

performance on the dev set within the last 20 epochs of training, which indicates that there may be 

some small benefit from training those models further because they have not yet begun overfitting the 

dev set. Given that the epoch training costs were converged to about 0.001, it is unlikely that the MAE 

for any of those models would decline by more than 0.01 kcal/mol. Even with further training, these 

models would be unlikely to exceed the performance of models 12 and 14. Therefore, models 12 and 14 

were selected to be used on the train set and compared against the performance of the current state-

of-the-art (gCP).  

Table 4. Test set performance in mean absolute error.  

Model Test MAE (kcal/mol) 

gCP, from ref. 3 0.5853 

gCP, epoch 1 0.2387 

Model 12 0.1672 

Model 14 0.1710 

 

 The optimized gCP parameters perform much better on the test set than those given in ref. 3, 

likely due to the advantage of training and testing on the same distribution. The comparison between 

the neural networks and the re-trained gCP model is more pertinent. Models 12 and 14, which have 

quite simple architectures and relatively few parameters, outperform the state-of-the-art by about 5% 

mean relative error, which corresponds to about a 33% reduction in error. In short, neural networks can 

significantly outperform the current state-of-the-art empirical corrections for estimating BSSE.   

Code for this section can be found in the MPNN folder.   

 



References:  

1. S. F. Boys, F. Bernardi. Mol. Phys. 1970, 19, 553-566. 

2. F. Jensen. J. Chem. Theo. Comp. 2010, 6, 100-106.  

3. H. Kruse. S. Grimme, J. Chem. Phys. 2012, 136, 154101.  

4. D. Weininger. J. Chem. Inf. and Comp. Sci. 1987, 28, 31-36. 

5. T. Fink, J.-L. Reymond, Angew. Chem. Int. Ed. 2005, 44, 1504-1508. 

6. L. Blum, J.-L. Reymond. J. Am. Chem. Soc. 2009, 131¸ 8732-8733. 

7. L. Martinez, R. Andrade, E. G. Birgin, J. M. Martinez. J. Comp. Chem. 2009, 30, 2157-2164. 

8. D.A. Case, I.Y. Ben-Shalom, S.R. Brozell, D.S. Cerutti, T.E. Cheatham, III, V.W.D. Cruzeiro, T.A. 

Darden, R. E. Duke, D. Ghoreishi, M. K. Gilson, H. Gohlke, A. W. Goetz, D. Greene, R. Harris, N. 

Homeyer, Y. Huang, S. Izadi, A. Kovalenko, T. Kurtzman, T.S. Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. 

Luchko, R. Luo, D.J. Mermelstein, K.M. Merz, Y. Miao, G. Monard, C. Nguyen, H. Nguyen, I. 

Omelyan, A. Onufriev, F. Pan, R. Qi, D.R. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, J. Shen, 

C.L. Simmerling, J. Smith, R. Salomon, Ferrer, J. Swails, R.C. Walker, J. Wang, H. Wei, R.M. Wolf, 

X. Wu, L. Xiao, D.M. York, P.A. Kollman (2018), AMBER 2018, University of California, San 

Francisco. 

9. H. Tatewaki, Y. Sakai, S. Huzinaga. J. Comp. Chem. 1981, 2, 278-286. 

10. I. Ufimtsev, T. Martinez. J. Chem. Theo. Comp. 2009, 5, 2619. 

11. A. Titov, I. Ufimtsev, N. Luehr, T. Martinez, J. Chem. Theo. Comp. 2013, 9, 213. 

 


