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1 Introduction

Additive manufacturing (AM) has allowed geometries that were once impossible to manufacture to
be created quickly. However, as AM technologies advance, there is a need to develop design tools
that can keep up with AM’s capabilities. Recently, there has been significant interest in using level
set methods and implicit surface modeling to create novel geometries, infills, and organic lattice-like
structures. These structures are typically generated based on trigonometric implicit surface equations
to ensure periodicity [1]. In this work, we use a generative adversarial network (GAN) to discover new
representations for modeling lattice structures that may lead to new, undiscovered lattice structures
that go beyond existing trigonometric implicit surface representations.

2 Dataset

The dataset consists of 31981 synthesized boolean voxel grids that represent periodic implicit surface
lattices. Specifically, they are synthesized using a trigonometric implicit surface equation of the form
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A physical interpretation of Equation[I]is that it uses two trigonometric functions, sine and cosine,
to generate periodic surfaces along the Cartesian coordinates. The factor of 7 is used to ensure
periodicity in the unit cube [—1, 1]3. Equation is general enough to represent all of the common
triply periodic level set approximations such as Schwarz-P, diamond (Schwarz-D), and Schoen’s
gyroid [2]. It is also used by researchers and additive manufacturing companies such as nTopology
and Carbon3D to design and manufacture real products [3, 4, 5, 6]. Thus, even though the dataset is
synthetic, it is representative of real world lattice structures.

Synthetic data is generated using Equation by first evaluating it in the domain [—1, 1]® using a
32 x 32 x 32 array in NumPy [7]. Positive array values represent empty space while negative
values represent solid material (and thus the value zero, also known as the zero level set, represents

CS230: Deep Learning, Spring 2020, Stanford University, CA. (I&[EXtemplate borrowed from NIPS 2017.)



Figure 1: Boolean voxel (left) and triangulation of a synthetic example.

the surface of the lattice structure). The arrays are then screened for printability using NetworkX
[8] to count the number of connected components. If the array contains more than one connected
component, we split up the surface by connected components, extract out the largest, and test to see
if the largest connected component touches all six faces of the unit cell. If it does, we add it to the
dataset. This prevents unprintable lattice structures from going into the database. In addition, any
unit cells with porosity greater than 50% are thrown out due to asthetic reasons and because sparser
lattices have been shown to have improved stiffness and strength to weight ratios for mechanical
applications. Finally, the arrays are booleanized by converting all interior voxels to True and exterior
voxels to False. Examples of synthesized voxel grids and their respective triangulations are shown in
Figure [T} The triangulations can be generated from the voxel grids using the marching cubes method
[9]. The triangulations are typically the input for additive manufacturing machines rather than the
voxel grids. However, this project will not consider the triangulations beyond their appearances and
aesthetics—all deep learning models will only use the voxel representations.

3 Brief Literature Review

Deep convolutional generative adversarial network (DCGAN) is probably one of the most successful
GAN implementations while being relatively simple to interpret and understand [10]. It primarily
uses transpose convolutional layers in the generator to create a 2D image from noise and regular
convolutional layers in the discriminator to convert a 2D image into a binary classification prediction.
A binary cross entropy loss is used to penalize the generator when it creates an example that the
discriminator predicts as fake, and is also used to penalize the discriminator when it predicts a fake
image as real.

In addition to DCGAN, other approaches to shape recognition and generation have used voxel based,
unstructured mesh based, and point cloud based algorithms. For example, TopologyLayer directly
uses point cloud data to determine homology structure, and learning algorithms can be tuned to
generate a particular homology [11], while FeaStNet uses the underlying graphical information stored
in meshes [12].

3DGAN is a 3D expansion of the DCGAN concept using the ShapeNet dataset for training [13]. This
work is most influenced by the 3D aspects of 3DGAN and the architecture of DCGAN, but using our
voxel dataset of lattice structures.

4 Implementation
We construct a DCGAN model based on an existing implementation on 2D data found at:
https://github.com/pytorch/examples/tree/master/dcgan

However, in our implementation, we replace any 2D operations with their respective 3D operation.
For example, all Convolution2D layers are replaced with Convolution3D layers. In addition, since we
are working with 32 x 32 x 32 voxel examples, the padding and strides have been adjusted from the
original DCGAN implementation.



The following are the applicable hyperparameters used by the model:

number of examples: m = 5785
batch size: nys = 64
image size: np, Ny, Nd, Ne = 32,32,32,1
number of filters: nf = 64 2)
latent vector size: n, = 100
learning rate: o = 0.0002
adam parameters: ; = 0.5, B3 = 0.999

The generator architecture is given by
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ConvTranspose3d: channels in 100, channels out 256, kernal 4, stride 1
BatchNorm3d: eps le-5, momentum 0.1

ReLU

ConvTranspose3d: channels in 256, channels out 128, kernal 4, stride 2, padding 1
BatchNorm3d: eps le-5, momentum 0.1

ReLU

ConvTranspose3d: channels in 128, channels out 64, kernal 4, stride 2, padding 1
BatchNorm3d: eps le-5, momentum 0.1

RelLLU

ConvTranspose3d: channels in 64, channels out 1, kernal 4, stride 2, padding 1
Tanh()

while the discriminator architecture is given by
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Conv3d: channels in 1, channels out 64, kernal 4, stride 2, padding 1
LeakyReLU: negative slope 0.2

Conv3d: channels in 64, channels out 128, kernal 4, stride 2, padding 1
BatchNorm3d: eps le-5, momentum 0.1

LeakyReLU: negative slope 0.2

Conv3d: channels in 128, channels out 256, kernal 4, stride 2, padding 1
BatchNorm3d: eps le-5, momentum 0.1

LeakyReLU: negative slope 0.2

Conv3d: channels in 256, channels out 1, kernal 4, stride 2

Sigmoid()

Because the generator uses a Tanh activation as the last year (with output range [—1, 1)), the input
boolean voxelgrid was converted such that all True values (interior voxels) become —1 and all False
values (exterior values) become +1. This also fits the existing convention that the surface is defined
by the zero level set and that interior voxels are negative, which is what the original implicit surface
equations follow. Implementation is done using PyTorch [14] using Google CoLaboratory platform
with GPUs.

5 Results

Several deepfakes as well as genenerator and discriminator losses are depicted in Figure[3] Both the
generator and discriminator losses decreased and leveled out after less than 200 iterations (2 epochs)
with the default Adam settings. The average porosity of the generated lattices is around 40%, which
is near the average of the training set.



5.1 Printability Loss

To improve the quality of the generated lattices, we attempt to enforce printability constraints in the
form of additional loss functions. Specifically, the generated lattices should ideally consist of one
single connected component, the opposing faces should be matching for periodicity reasons, and the
density of the lattices should be relatively low (e.g. 10-40%) without becoming razor thin. These
additional losses, deemed PrintabilityLoss, are only applied to the generator and not the discriminator
in an effort to encourage the generator to produce more realistic lattice structures.

5.1.1 Density Loss
To reduce density, we add a density loss for a single example = defined as

. 1(z <0)
DensityLoss(x) = 39 % 32 X 32 3)
This loss physically represents the density of the example and is summed up across all examples. The
network was trained using five epochs but with various amounts of density loss regularization applied.
As shown in Table[5.1.1] increasing density loss reduces the density of the generated examples, but
when Agensity is increased to 0.1, the density increases and the model begins to show instabilities in
the losses (lots of oscillations).

Adensity Average density
0 0.4181405639648437
0.001 0.41351806640625
0.01 0.35408111572265627
0.1 0.3858355712890625

Two examples of lattices with and without density loss are shown in Figure 4]

5.1.2 Periodicity Loss

To enforce surface periodicity, we note the fact that matching voxels on opposite faces should have
the same signs. A reasonable loss function would be based on taking the exclusive or (XOR) of
opposing faces and summing up the results, but the element-wise XOR operation in PyTorch is not
differentiable. Instead, we resort to a hack. We take the element-wise product of opposing faces,
negate the values, and apply a softplus function. This effectively reduces any negative values (which
are generated by element pairs with the same sign) to zero while keeping the values of positive values
(which are generated by element pairs with opposite signs). The surface periodicity loss for a single
example z is defined as

3
SurfacePeriodicityLoss(z) = Z Z In(1 + exp(w(i;0) - T[i;31))) 4)
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where ;. ;) refers to the j-th slice of the i-th face on example . Note that this loss is only applied to
surface voxels as the surface is mainly responsible for maintaining periodicity in a large continuous
lattice. Surface voxel images with varying amounts of periodicity loss applied are shown in Figure
[l At high periodicity loss values, the generator begins to make all surfaces entirely solid. This is
reasonable behavior because as more emphasis is put on periodicity, the generator becomes worse at
producing geometries that fool the discriminator. Increasing the number of epochs from five to ten
while keeping the periodicity loss at a reasonable level seems to produce better periodicity results, as
shown in Figure [0

5.1.3 Persistent Homology Loss

We attempted to add persistent homology loss to drive the generation towards single connected
component shapes but were unable to due to difficulty in getting a persistent homology package into
CoLaboratory. TopologyLayer seemed the most promising but CoLaboratory could not compile the
package properly. Alternatives like Ripser were investigated as well but could not be easily ported to
PyTorch. This should be a subject of future investigations.
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Figure 2: Examples of four deep fakes generated by our GAN with density and periodicity loss
applied.

5.2 Finalized Parameter Set

Using all 31981 examples in the dataset, we ran the model with 0.2 density loss and 1e — 4 weight
for periodicity loss for over 5 epochs. Deep fakes generated with these hyperparameters (depicted in
Figure[2) show an average density of 33% and have reasonable face periodicity. Figure[2(d) depicts
an example of a fake that is not very convincing. The generator and discriminator loss functions,
shown in Figure 2] suggest that while the discriminator seems to have converged, the generator is
still rather unstable. However, the generator loss did decrease from 20 to about 15 over the 5 epochs,
showing it was able to successfully fool the discriminator in some cases. The biggest impact seemed
to be increasing the dataset from the original 5000 to 31981 examples. Specifically, adding examples
from multiple connected component lattices but with only the biggest component kept seemed to
help the GAN generate more convincing lattices, since these lattices cannot be generated directly
from the implicit surface equations and requires a postprocessing filtering step.

6 Future Work

The current work utilized an existing 2D DCGAN that was converted to accept 3D boolean voxel grid
inputs. The layers only consist of convolutional, transpose convolutional, and batch normalization
layers. Some aspects of printability constraints were imposed using modified loss functions to control
the density and surface periodicity of the generated lattices. Increasing the number of examples from
5000 to 31981 greatly improved the realism of the generated shapes. However, several aspects that
should be addressed in future work include:

1. The real examples only contain voxel values of -1 and +1, but the generator produces fakes
with real values. Would using real-valued examples help or hurt the generation?

2. If persistent homology was applied, can it be used to constrain the number of connectedc
components as well as holes and cavities?

3. Are there any patterns or clusters in the generated lattices? Are they diverse looking or are
they narrow focused? What are the appropriate metrics for evaluating diversity in a set of
lattices?

Dataset and Model Availability

The full dataset and CoLaboratory notebook may be found at

https://github.com/rchensix/cs230_public
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Figure 3: Left: Voxel grids of three deepfakes generated with GAN. Top row depicts voxels with
values above zero and bottom row depicts voxels with values below zero. Right: Generator (blue)
and discriminator (red) loss over several hundred minibatch iterations (10 epochs total).
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Figure 4: Left: Examples of three deepfakes without density loss. Right: Three deepfakes with
density loss of Agensity = 0.01. Generator (blue) and discriminator (red) loss for with and without

density loss applied are shown at the top.

Appendix
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Figure 5: Opposing faces of a deepfake generated with various levels of periodicity loss. Yellow
indicates a positive (exterior) voxel while purple indicates a negative (interior) voxel. At a periodicity
loss of 0.001, the generator tries to make the surfaces entirely solid.

Face

Figure 6: Top: Generator (blue) and discriminator (red) loss for model after 10 epochs, showing
strange loss behavior in the generator. Bottom: Opposing faces of a deepfake generated with this
model. Yellow indicates a positive (exterior) voxel while purple indicates a negative (interior) voxel.
The results show the generator does better with matching face voxels compared to the model trained
with 5 epochs.
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