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Abstract 

 
The task of image segmentation of satellite imagery to 

determine the landability of various environments was 
investigated through the study of two main network 
architectures: U-Net and SegNet. Due to the lack of readily 
available datasets for this purpose, the networks were 
suffering from overfitting and were initially unable to 
accurately determine the landability of some roads and 
green spaces. The unbalanced dataset (skewed toward 
more non-landable patches) further caused issues in this 
regard, but the authors chose to augment the initial dataset, 
increasing the number of training images threefold. The U-
Net architecture had more favorable runtime 
characteristics compared to SegNet, and dropout rates 
greater than or equal to 0.5 seemed to yield very promising 
results, as long as the model was not trained for too many 
epochs because overtraining would lead to the network 
labeling all areas as non-landable. 
 

1. Introduction 

The growing Urban Air Mobility (UAM) movement 
seeks to integrate aerial transport into quotidian life--drone 
deliveries and on-demand air taxis represent a few key 
initiatives. Current day aviation operations rely on 
dedicated infrastructures (i.e. airports, heliports) for takeoff 
and landing. In contrast, UAM desires to integrate takeoff 
and landing infrastructures directly into existing buildings 
in urban environments; for example, prospective skyscraper 
rooftops would serve as “vertiports” that allow 
takeoff/landing. Little progress has been made on 
identifying possible candidates for the “vertiports”. This 
project seeks to use deep learning as a tool for finding 
possible locations for such vertiports using satellite 
imagery. There has been previous work in the field of image 
segmentation of satellite imagery (e.g. mapping disaster 
risk from aerial imagery1 and identifying rooftops for solar 
energy adaptation2). However, it seems like utilizing deep 
learning for the purposes of finding potential vertiport 
locations has not been done before. 
 This project focuses on the area of deep learning called 
computer vision in order to perform image segmentation on 

various satellite images. Image segmentation involves 
labeling each pixel in an image as a certain class (in this 
case either landable or not landable) such that the entire 
satellite image is partitioned into landable zones and non-
landable zones. The first step in performing this work is 
acquiring a dataset of satellite images from which a training 
set, development set, and a test set can be drawn. After 
searching many online resources, including AWS public 
repository of datasets, a publicly available dataset that was 
collected by Lawrence Livermore National Laboratory3 for 
the purpose of detecting and counting cars was found. This 
dataset contains more than 300,000 images of urban and 
rural environments where cars are likely to be found. This 
seems to be conducive for our purposes, as we are seeking 
to find locations in urban and suburban environments to 
build vertiports. These images are 192 pixels by 192 pixels, 
with white representing landable areas and black 
representing non-landable areas. This resolution is helpful 
for training purposes because it is fine enough that humans 
can look at the image and distinguish the important features 
while being coarse enough that training on a large number 
of images should not be too computationally expensive. 
 Labeling the large amount of data that may be required 
to train and test a well-functioning neural network is a 
problem, especially given the short timeframe of this 
project. A deal was arranged with the Director of Marketing 
at Labelbox in which we get free labeling services from 
their workforce for the duration of the project in return for 
providing a testimonial about our experience with the 
software after the conclusion of the project. As a result of 
establishing this relationship, our group has access to 5,252 
labelled images from which to construct our training, 
validation, and test datasets. Even though 10,000 or more 
images would be ideal, our group should be able to focus 
on analyzing various neural network architectures and the 
effects of changing a number of hyperparameters. 

 

2. Model Characteristics 

There were two types of architectures explored in this 
project: standard U-Net and SegNet. Both of these 
architectures are designed for image segmentation tasks and 
share a common neural network structure, compared below 
in Fig. 1 and Fig. 2. 
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Figure 1: U-Net architecture4. 

 
Figure 2: SegNet architecture5. 

 
These architectures are characterized by encoder and 
decoder networks. The encoder networks are characteristic 
of most conventional convolutional neural networks for 
classification problems in which the data is pooled such that 
the data size decreases in each layer, and number of filters 
becomes larger in each successive layer. However, once a 
bottleneck is reached, these architectures contain an 
analogous decoder network which upsamples the data using 
information from the encoder layers. This is where the two 
architectures differ. While a SegNet uses the max-pooling 
indices received from the corresponding encoder to perform 
non-linear upsampling of their input feature maps, the U-
Net transfers the entire feature map to the corresponding 
decoders and concatenates them to upsampled decoder 
feature maps5. Transferring the entire feature map costs 
more memory than SegNet’s implementation, but it gives 
the decoder network more information about the original 
image. The benefits of these networks is that they can 
typically achieve good performance with relatively few 
training examples compared to other computer vision tasks 
because the training data of the network is actually the 
number of patches present in the input labels rather than the 
input images as a whole. This allows each training image to 
essentially function as a collection of training patches from 
which the network can learn4. This justifies the use of a 
training set of roughly 4,500 images rather than training 
datasets on the order of tens or hundreds of thousands of 
images.  

In the seminal paper introducing SegNets, the encoder 
network used a VGG16 architecture5. As a result, the 
structure of the encoder/decoder networks must be 
addressed in a little more detail. In our analysis, our group 
studied the speed and performance of using the 
VGG16  encoding architecture (SegNet) in comparison to a 

simpler U-Net architecture. Most notably, the standard U-
Net network has fewer layers, fewer filters per convolution 
as well as upsampling in combination with same-padding 
convolution on the up-blocks rather than transposed 
convolutions. The simpler architecture had similar 
performance than the more complex VGG16 architecture, 
but it was able to train and fit models much quicker. To 
compare run-time performance, a “base” case was created 
for each architecture. The base case for both architectures 
had 16 filters in the first convolution, and doubled until 
reaching the bottleneck. Post-bottleneck, the number of 
filters halved until reaching the last sigmoid node. The 
following table outlines the run times for a single epoch on 
a personal computer for ~4,500 training images with a batch 
size of 16: 

 
 

Number 
Parameters 

Run Time/Epoch 10 Epoch 
Loss 

Base 
U-Net 

1.9 million 100 seconds 0.395 

Base 
SegNet 

5.2 million 150 seconds 0.335 

Table 1: U-Net vs. SegNet runtime. 
 
The above table highlights that the more complex SegNet 
architecture takes longer but does not yield a significant 
improvement in the loss after 10 epochs. To reduce 
underfitting, it consequently appears more promising to 
investigate larger U-Net architectures rather than larger 
SegNet architectures. Further, because this network would 
ideally need to be quick enough to perform real time image 
segmentation using a drone with a camera to determine 
feasible landing sites, speed is critical to this network’s 
success. As a result, the simpler architecture was adopted 
(and larger U-Net architectures were only adopted if 
underfitting was non-negligible).  
 

3. Hyperparameter Studies 

After settling on a network architecture, various 
hyperparameters, like dropout rate, learning rate decay, L2 
regularization and batch size, must be adjusted in hopes of 
improving network performance by reducing overfitting, 
which results in a high training set accuracy but a low 
validation set accuracy. Before the details of the 
hyperparameter study are discussed, it is important to 
describe the metrics our group is using to determine the 
quality of the network. There are two primary methods for 
computing validation performance for image segmentation: 
pixelwise-accuracy and IoU (Intersection over Union). 
Leading image segmentation models have an IoU around 
0.7, but results of this quality should not be expected due to 
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the limited computational resources available for this 
project. However, the accuracy and IoU are severely limited 
by two key failure modes which are prevalent in 
preliminary models.  

The two failure modes that were identified in our project 
were the neural network’s behavior of marking roads as 
landable, despite the fact that the labeled training data is 
consistent with roads not being suitable landing zones, and 
the inability of our network to recognize rugged textures in 
green areas that delineate a nice, open field from a heavily 
forested area, both of which are shown by some examples 
in Fig. 3. 

 

 

 

 
Figure 3: Examples of failure modes in preliminary 

models (true label: right, network prediction: center). 
 
However, there are positives to take away from these 
failures, and there seems to be a solution to these issues. 
The ability of our neural network to identify roads 
accurately speaks to its ability to detect edges with high 
fidelity, indicating that the weights in the first few layers 
seem to be well-tuned for this purpose. Furthermore, our 
network is also able to recognize green spaces and separate 
them from other features. To fix these issues, the original 
training dataset is augmented by flipping the original 
images both left-right and up-down to create a dataset of 
15,756 images in hopes that more training data of roads and 
green spaces will aid in the network’s ability to correctly 
label them.  

To methodically determine the optimal network 
hyperparameters for the simple U-Net architecture, a grid-
search of hyperparameters was undertaken. Three separate 
parameters were varied: encoder dropout rate, decoder 
dropout rate, and number of filters. L2 regularization was 
considered to reduce overfitting, but the effect of varying 

dropout rate was much more pronounced. Exploring these 
combinations allowed our group to better analyze 
overfitting and underfitting trends. The following table 
illustrates the tested hyperparameters. 
 

Encoder 
Dropout 
Range 

Decoder 
Dropout 
Range 

Number Filters/Layer 

0.0-0.7 0.0-0.7 [16, 32, 64, 128, 256] - [32, 64, 
128. 256, 512] 

Table 2: Sample hyperparameter grid search cases. 
 

4. Results 

The trends observed in the above hyperparameter search 
confirm expectation. Training accuracy decreases as 
dropout rate increases, but validation accuracy improves. 
This is suggestive of overtraining, even in the smaller U-
Net architectures. Further interesting trends are observed 
when varying dropout rates between the encoder and 
decoder. Higher encoder dropout rates and slightly lower 
decoder dropout rates represents the most promising to 
combat overtraining. The following table illustrates a few 
examples for the smaller network: 
 

Encoder 
Dropout 

Decoder 
Dropout 

Training 
Accuracy 

Validation 
Accuracy 

0.1 0.1 96% 86% 

0.1 0.5 98% 88% 

0.5 0.1 90% 87% 

Table 3: Effects of dropout variation in encoder and 
decoder. 

 
This may arise because the encoder does the bulk of 
“learning” by compressing and noting the salient features, 
whereas the decoder maps the learned features back to the 
appropriate areas based on the pooled indices. Therefore, 
low encoder dropout probabilities and high decoder dropout 
probabilities do not largely target the overfitting during 
“learning”.  

Overtraining can also pose serious problems. To coarsely 
investigate the impact of overtraining, two instances of the 
randomly selected architecture were trained for 70 and 150 
epochs, respectively. Longer training significantly reduced 
network performance. While the validation loss does 
decrease slightly for more epochs because of the class-
imbalance between non-landable and landable regions, 
lower validation loss does not necessarily correlate to a 
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better architecture. The following table illustrates the 
validation loss and provides a qualitative description: 
 

Epochs Validation 
Loss 

Qualitative Description 

70 -4500 Accurate contour 
detection 

150 -4790 Mostly all-black 

Table 4: Effects of overtraining. 
 

Table 5 illustrates the parameters of the most promising 
model, and Table 6 describes some performance parameters 
of the final model.  

 
 
 

Type Number 
Encoder 
Layers 

Number 
Decoder 
Layers 

Encoder 
Filters/Layer 

Decoder 
Filters/Layer 

Encoder 
Dropout 

Rate 

Decoder 
Dropout 

Rate 

Epochs 

U-Net 4 4 16,32,64,128,256 256,128,64,32,16 0.7 0.5 70 

Table 5: Selected model hyperparameters. 
 

Training 
Accuracy 

Validation 
Loss 

Validation 
Accuracy 

Qualitative 
Description 

87% -5004 82% Follows 
contours well 

Table 6: Performance characteristics of final model. 
 

In addition, Fig. 4 shows 6 example images, labels, and 
network predictions made by the final model. 

 

 

 

 

 

 

 
Figure 4: Six examples of predictions made by the 

tuned network. 
 
There are several potential areas for improvement. Most 

notably, the largest obstacle stems from the lack of training 
data and labeling. 4,500 images (before image 
augmentation) is a fairly small training set. Furthermore, 
while dropout may have reduced overfitting, not all of the 
relevant features were learned even with larger 
architectures (more filters/layers)--this provides direct 
support for a larger training set. Another potential error 
stems from the class imbalance. Because of the relatively 
larger bias for non-landable regions in the training data, the 
network will often converge towards an “all not-landable” 
local minimum. A potential way to address this challenge, 
other than increased training data, could be to consider 
different loss functions, or to solely augment those images 
with significant landable zones. The dice loss function has 
been shown to handle class-imbalance challenges, but has 
also led to poor gradients that can slow down training. 
Consequently, batch normalization and potentially skip 
connection may be needed when implementing dice loss. 

As mentioned previously, this network should be able to 
segment new images into landable and non-landable zones 
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quickly, as it will be deployed on the hardware of an urban 
air vehicle. This network’s evaluation time per validation 
image on a machine with 16 GB of RAM and an NVIDIA 
GEFORCE GTX 1060 graphics card is 0.033 seconds, 
indicating that this simple U-Net architecture is fast enough 
to handle the demands it would experience being deployed 
on a real system. 

  

5. Contribution 

Andrew Denig was responsible for creating the 
software which managed the training, validation, and test 
data (automatically sorting it and performing image 
augmentation), and he created the main visualization tool 
for the project. In addition, he wrote the software which 
automated the generation of networks with various 
hyperparameters, and as a result, he was responsible for 
running and collecting data on most cases on AWS 
servers.  

Seraj Desai was responsible for programming the 
neural network architectures, and he was the driving 
force behind the selection of U-Net over SegNet. He 
developed the software which is capable of running 
individual cases and showing their results, allowing the 
group to verify the performance of promising models. 
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