

1

Abstract

The task of image segmentation of satellite imagery to

determine the landability of various environments was
investigated through the study of two main network
architectures: U-Net and SegNet. Due to the lack of readily
available datasets for this purpose, the networks were
suffering from overfitting and were initially unable to
accurately determine the landability of some roads and
green spaces. The unbalanced dataset (skewed toward
more non-landable patches) further caused issues in this
regard, but the authors chose to augment the initial dataset,
increasing the number of training images threefold. The U-
Net architecture had more favorable runtime
characteristics compared to SegNet, and dropout rates
greater than or equal to 0.5 seemed to yield very promising
results, as long as the model was not trained for too many
epochs because overtraining would lead to the network
labeling all areas as non-landable.

1. Introduction

The growing Urban Air Mobility (UAM) movement
seeks to integrate aerial transport into quotidian life--drone
deliveries and on-demand air taxis represent a few key
initiatives. Current day aviation operations rely on
dedicated infrastructures (i.e. airports, heliports) for takeoff
and landing. In contrast, UAM desires to integrate takeoff
and landing infrastructures directly into existing buildings
in urban environments; for example, prospective skyscraper
rooftops would serve as “vertiports” that allow
takeoff/landing. Little progress has been made on
identifying possible candidates for the “vertiports”. This
project seeks to use deep learning as a tool for finding
possible locations for such vertiports using satellite
imagery. There has been previous work in the field of image
segmentation of satellite imagery (e.g. mapping disaster
risk from aerial imagery1 and identifying rooftops for solar
energy adaptation2). However, it seems like utilizing deep
learning for the purposes of finding potential vertiport
locations has not been done before.
 This project focuses on the area of deep learning called
computer vision in order to perform image segmentation on

various satellite images. Image segmentation involves
labeling each pixel in an image as a certain class (in this
case either landable or not landable) such that the entire
satellite image is partitioned into landable zones and non-
landable zones. The first step in performing this work is
acquiring a dataset of satellite images from which a training
set, development set, and a test set can be drawn. After
searching many online resources, including AWS public
repository of datasets, a publicly available dataset that was
collected by Lawrence Livermore National Laboratory3 for
the purpose of detecting and counting cars was found. This
dataset contains more than 300,000 images of urban and
rural environments where cars are likely to be found. This
seems to be conducive for our purposes, as we are seeking
to find locations in urban and suburban environments to
build vertiports. These images are 192 pixels by 192 pixels,
with white representing landable areas and black
representing non-landable areas. This resolution is helpful
for training purposes because it is fine enough that humans
can look at the image and distinguish the important features
while being coarse enough that training on a large number
of images should not be too computationally expensive.
 Labeling the large amount of data that may be required
to train and test a well-functioning neural network is a
problem, especially given the short timeframe of this
project. A deal was arranged with the Director of Marketing
at Labelbox in which we get free labeling services from
their workforce for the duration of the project in return for
providing a testimonial about our experience with the
software after the conclusion of the project. As a result of
establishing this relationship, our group has access to 5,252
labelled images from which to construct our training,
validation, and test datasets. Even though 10,000 or more
images would be ideal, our group should be able to focus
on analyzing various neural network architectures and the
effects of changing a number of hyperparameters.

2. Model Characteristics

There were two types of architectures explored in this
project: standard U-Net and SegNet. Both of these
architectures are designed for image segmentation tasks and
share a common neural network structure, compared below
in Fig. 1 and Fig. 2.

Determining Landable Areas for Urban Air Vehicles via Image Segmentation

Andrew Denig
Stanford University

adenig3@stanford.edu

Seraj Desai
Stanford University
serajd@stanford.edu

2

Figure 1: U-Net architecture4.

Figure 2: SegNet architecture5.

These architectures are characterized by encoder and
decoder networks. The encoder networks are characteristic
of most conventional convolutional neural networks for
classification problems in which the data is pooled such that
the data size decreases in each layer, and number of filters
becomes larger in each successive layer. However, once a
bottleneck is reached, these architectures contain an
analogous decoder network which upsamples the data using
information from the encoder layers. This is where the two
architectures differ. While a SegNet uses the max-pooling
indices received from the corresponding encoder to perform
non-linear upsampling of their input feature maps, the U-
Net transfers the entire feature map to the corresponding
decoders and concatenates them to upsampled decoder
feature maps5. Transferring the entire feature map costs
more memory than SegNet’s implementation, but it gives
the decoder network more information about the original
image. The benefits of these networks is that they can
typically achieve good performance with relatively few
training examples compared to other computer vision tasks
because the training data of the network is actually the
number of patches present in the input labels rather than the
input images as a whole. This allows each training image to
essentially function as a collection of training patches from
which the network can learn4. This justifies the use of a
training set of roughly 4,500 images rather than training
datasets on the order of tens or hundreds of thousands of
images.

In the seminal paper introducing SegNets, the encoder
network used a VGG16 architecture5. As a result, the
structure of the encoder/decoder networks must be
addressed in a little more detail. In our analysis, our group
studied the speed and performance of using the
VGG16 encoding architecture (SegNet) in comparison to a

simpler U-Net architecture. Most notably, the standard U-
Net network has fewer layers, fewer filters per convolution
as well as upsampling in combination with same-padding
convolution on the up-blocks rather than transposed
convolutions. The simpler architecture had similar
performance than the more complex VGG16 architecture,
but it was able to train and fit models much quicker. To
compare run-time performance, a “base” case was created
for each architecture. The base case for both architectures
had 16 filters in the first convolution, and doubled until
reaching the bottleneck. Post-bottleneck, the number of
filters halved until reaching the last sigmoid node. The
following table outlines the run times for a single epoch on
a personal computer for ~4,500 training images with a batch
size of 16:

Number
Parameters

Run Time/Epoch 10 Epoch
Loss

Base
U-Net

1.9 million 100 seconds 0.395

Base
SegNet

5.2 million 150 seconds 0.335

Table 1: U-Net vs. SegNet runtime.

The above table highlights that the more complex SegNet
architecture takes longer but does not yield a significant
improvement in the loss after 10 epochs. To reduce
underfitting, it consequently appears more promising to
investigate larger U-Net architectures rather than larger
SegNet architectures. Further, because this network would
ideally need to be quick enough to perform real time image
segmentation using a drone with a camera to determine
feasible landing sites, speed is critical to this network’s
success. As a result, the simpler architecture was adopted
(and larger U-Net architectures were only adopted if
underfitting was non-negligible).

3. Hyperparameter Studies

After settling on a network architecture, various
hyperparameters, like dropout rate, learning rate decay, L2
regularization and batch size, must be adjusted in hopes of
improving network performance by reducing overfitting,
which results in a high training set accuracy but a low
validation set accuracy. Before the details of the
hyperparameter study are discussed, it is important to
describe the metrics our group is using to determine the
quality of the network. There are two primary methods for
computing validation performance for image segmentation:
pixelwise-accuracy and IoU (Intersection over Union).
Leading image segmentation models have an IoU around
0.7, but results of this quality should not be expected due to

3

the limited computational resources available for this
project. However, the accuracy and IoU are severely limited
by two key failure modes which are prevalent in
preliminary models.

The two failure modes that were identified in our project
were the neural network’s behavior of marking roads as
landable, despite the fact that the labeled training data is
consistent with roads not being suitable landing zones, and
the inability of our network to recognize rugged textures in
green areas that delineate a nice, open field from a heavily
forested area, both of which are shown by some examples
in Fig. 3.

Figure 3: Examples of failure modes in preliminary

models (true label: right, network prediction: center).

However, there are positives to take away from these
failures, and there seems to be a solution to these issues.
The ability of our neural network to identify roads
accurately speaks to its ability to detect edges with high
fidelity, indicating that the weights in the first few layers
seem to be well-tuned for this purpose. Furthermore, our
network is also able to recognize green spaces and separate
them from other features. To fix these issues, the original
training dataset is augmented by flipping the original
images both left-right and up-down to create a dataset of
15,756 images in hopes that more training data of roads and
green spaces will aid in the network’s ability to correctly
label them.

To methodically determine the optimal network
hyperparameters for the simple U-Net architecture, a grid-
search of hyperparameters was undertaken. Three separate
parameters were varied: encoder dropout rate, decoder
dropout rate, and number of filters. L2 regularization was
considered to reduce overfitting, but the effect of varying

dropout rate was much more pronounced. Exploring these
combinations allowed our group to better analyze
overfitting and underfitting trends. The following table
illustrates the tested hyperparameters.

Encoder
Dropout
Range

Decoder
Dropout
Range

Number Filters/Layer

0.0-0.7 0.0-0.7 [16, 32, 64, 128, 256] - [32, 64,
128. 256, 512]

Table 2: Sample hyperparameter grid search cases.

4. Results

The trends observed in the above hyperparameter search
confirm expectation. Training accuracy decreases as
dropout rate increases, but validation accuracy improves.
This is suggestive of overtraining, even in the smaller U-
Net architectures. Further interesting trends are observed
when varying dropout rates between the encoder and
decoder. Higher encoder dropout rates and slightly lower
decoder dropout rates represents the most promising to
combat overtraining. The following table illustrates a few
examples for the smaller network:

Encoder
Dropout

Decoder
Dropout

Training
Accuracy

Validation
Accuracy

0.1 0.1 96% 86%

0.1 0.5 98% 88%

0.5 0.1 90% 87%

Table 3: Effects of dropout variation in encoder and
decoder.

This may arise because the encoder does the bulk of
“learning” by compressing and noting the salient features,
whereas the decoder maps the learned features back to the
appropriate areas based on the pooled indices. Therefore,
low encoder dropout probabilities and high decoder dropout
probabilities do not largely target the overfitting during
“learning”.

Overtraining can also pose serious problems. To coarsely
investigate the impact of overtraining, two instances of the
randomly selected architecture were trained for 70 and 150
epochs, respectively. Longer training significantly reduced
network performance. While the validation loss does
decrease slightly for more epochs because of the class-
imbalance between non-landable and landable regions,
lower validation loss does not necessarily correlate to a

4

better architecture. The following table illustrates the
validation loss and provides a qualitative description:

Epochs Validation
Loss

Qualitative Description

70 -4500 Accurate contour
detection

150 -4790 Mostly all-black

Table 4: Effects of overtraining.

Table 5 illustrates the parameters of the most promising
model, and Table 6 describes some performance parameters
of the final model.

Type Number
Encoder
Layers

Number
Decoder
Layers

Encoder
Filters/Layer

Decoder
Filters/Layer

Encoder
Dropout

Rate

Decoder
Dropout

Rate

Epochs

U-Net 4 4 16,32,64,128,256 256,128,64,32,16 0.7 0.5 70

Table 5: Selected model hyperparameters.

Training
Accuracy

Validation
Loss

Validation
Accuracy

Qualitative
Description

87% -5004 82% Follows
contours well

Table 6: Performance characteristics of final model.

In addition, Fig. 4 shows 6 example images, labels, and
network predictions made by the final model.

Figure 4: Six examples of predictions made by the

tuned network.

There are several potential areas for improvement. Most

notably, the largest obstacle stems from the lack of training
data and labeling. 4,500 images (before image
augmentation) is a fairly small training set. Furthermore,
while dropout may have reduced overfitting, not all of the
relevant features were learned even with larger
architectures (more filters/layers)--this provides direct
support for a larger training set. Another potential error
stems from the class imbalance. Because of the relatively
larger bias for non-landable regions in the training data, the
network will often converge towards an “all not-landable”
local minimum. A potential way to address this challenge,
other than increased training data, could be to consider
different loss functions, or to solely augment those images
with significant landable zones. The dice loss function has
been shown to handle class-imbalance challenges, but has
also led to poor gradients that can slow down training.
Consequently, batch normalization and potentially skip
connection may be needed when implementing dice loss.

As mentioned previously, this network should be able to
segment new images into landable and non-landable zones

5

quickly, as it will be deployed on the hardware of an urban
air vehicle. This network’s evaluation time per validation
image on a machine with 16 GB of RAM and an NVIDIA
GEFORCE GTX 1060 graphics card is 0.033 seconds,
indicating that this simple U-Net architecture is fast enough
to handle the demands it would experience being deployed
on a real system.

5. Contribution

Andrew Denig was responsible for creating the
software which managed the training, validation, and test
data (automatically sorting it and performing image
augmentation), and he created the main visualization tool
for the project. In addition, he wrote the software which
automated the generation of networks with various
hyperparameters, and as a result, he was responsible for
running and collecting data on most cases on AWS
servers.

Seraj Desai was responsible for programming the
neural network architectures, and he was the driving
force behind the selection of U-Net over SegNet. He
developed the software which is capable of running
individual cases and showing their results, allowing the
group to verify the performance of promising models.

6. References

1) “Open AI Caribbean Challenge: Mapping Disaster Risk from
Aerial Imagery.” DrivenData, MathWorks, 2020,
www.drivendata.org/competitions/58/disaster-response-roof-
type/page/143/.

2) Mitra, Rudradeb. “Using Image Segmentation to Identify
Rooftops in Low-Resolution Satellite Images.” Medium, Towards
Data Science, 30 Jan. 2020, towardsdatascience.com/using-
image-segmentation-to-identify-rooftops-in-low-resolution-
satellite-images-c791975d91cc.

3) T. N. Mundhenk, G. Konjevod, W. A. Sakla, and K. Boakye. A
large contextual dataset for classification, detection and counting
of cars with deep learning. In ECCV, pages 785– 800, 2016.

4) O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional
networks for biomedical image segmentation. In MICCAI, pages
234–241. Springer, 2015.

5) V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep
convolutional encoder-decoder architecture for image
segmentation. arXiv:1511.00561v2 [cs.CV], 2015.

