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Abstract

With increased access to large datasets from remote sensing products, Machine
Learning scientists in recent years have shown that the use of artificial recurrent
neural network like the Long Short-Term Memory networks (LSTMs) are ideal
in learning long-term hydrological dependencies which could be generalized for
multiple watershed basins. However, with large training datasets common in
Hydrology, training LSTMs and their gate (usually 3 to 4) parameters can be very
computationally expensive. In this paper, we trained an Adapted Gated Recurrent
Network (A-GRU)- which is a GRU adapted to train the static and dynamic input
features separately with 2 gates- on a large publicly available dataset with 531
basins over a 19 years period . Our hypothesis was that the A-GRU model would be
as efficient as LSTMs in learning the long-term hydrologic dependencies on fewer
parameters with the added simplicity of fewer gates and lower computational cost.
Our result confirmed this hypothesis with A-GRU showing similar Nash Sutcliffe
efficiency (NSE) metric compared to the baseline LSTM model and faster learning
requiring lesser iterations on epochs.

1 Introduction

Given the accelerating effects of climate change in the hydrologic cycle and rapid population expan-
sion in the floodplains, precision risk modeling of inland floods is more important and challenging
than ever today. Majority of streams around the world are either ungauged or poorly gauged, which
is why the rainfall-streamflow modeling in ungauged watershed basins still remains an important
challenge in Hydrological forecasting. The traditional models used to forecast the streamflow and
floods such as the Sacramento Soil Moisture Accounting [4] (SAC-SMA) are models highly based
on heuristic physical processes and are calibrated empirically to fit the hydrological signatures of
particular basin(s).

In contrast to the physical ones, data-driven models do not suffer from this limitation of regionaliza-
tion and can be generalized over a wide range of basins more effectively. In recent years, papers like
[4] have shown that the use of artificial recurrent neural networks like the Long Short-Term Memory
networks (LSTMs) are ideal in learning long-term hydrological dependencies which could be gener-
alized for multiple watershed basins with improved accuracy of predictions. In this paper, we propose
a different architecture based on another commonly used recurrent neural network- Gated Recurrent
Units (GRU) which shares the same advantage of having memory cells, but with lesser parameters to
train compared to LSTM and therefore- lower computation cost. The input dataset to our model was
fetched from a large publicly available repository called Catchment Attributes and Meteorology for
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Large-Sample Studies (CAMELS) [2] which contains 19 years of hydrometeorological time-series
data and static basin attributes for 531 basins across the United States. This is fed into our neural
network which has been adapted to take in the time-series and static values separately (trained with
separate parameters), and from here on will be referred to as the Adapted GRU, or A-GRU. The
model then outputs one single volumetric streamflow value at each time-step which will be compared
against the ground truth values also available in CAMELS.

2 Related work

Most recently, [4] compared the results of the conventional hydrological models like SAC-SMA to
their LSTM architecture using the Nash Sutcliffe efficiency (NSE) metric - explained in [3] - and
had an improvement in the overall streamflow predictions. We discovered that most of the previous
approaches of Machine Learning in Hydrology have focused on different versions of LSTM and have
reached the same conclusion. The version that [4] used is called Entity-Aware (EA) LSTM where
input features are separated into dynamic (x4[t]), and static / time-independent (x5) vectors (further
explained in section 3.2) in the EA-LSTM cells. In each of these cells, input gate is controlled by
xs , whereas x4[t] controls information in the forget gate and memory gate as illustrated in figure
1. Overall, the authors found that EA-LSTM provides an improved NSE of 0.71 (median of all
studied basins) compared to SAC-SMA’s 0.64 NSE. We used the Git Repository of EA-LSTM for
our baseline model and comparison with the proposed A-GRU, which will be explained further in
section 5.
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Figure 1: Visualization of the Entity-Aware-LSTM (EA-LSTM) cell as defined by [41], where i[t], f[t],
and olt] are the input gate, forget gate, and output gate, respectively and glt] is the cell memory.

3 Dataset and features

3.1 Dataset description

The data used in this project was found in publicly available Catchment Attributes and Meteorology
for Large-Sample Studies (CAMELS) data set curated by the National Center for Atmospheric
Research. The CAMELS data set comprises the data collected for 671 basins/ catchments in the
U.S. spanning from 1989 to 2008 time-frame, 531 of which will be used for this project. This
dataset in A-GRU is divided the same way as our benchmark EA-LSTM model. It was separated
into the training and validation sets by [4] as: Training set: 531 basins, 1999 to 2008 (9 years);
Development/Evaluation set: 531 basins, 1989 to 1999 (10 years).

3.2 Relevant dataset features and their basic statistics

The CAMELS data is broadly classified into 2 different datasets. First is the hydrometeorological
time series introduced in [2]. The second data set is the static catchment attributes introduced in
[1, 5]. The input features will consist of 5 time series daily meteorological forcing data: maximum air
temperature, minimum air temperature, precipitation, solar radiation, and vapor pressure. Additionally,
at each time step, the meteorological inputs will be augmented with 27 different static catchment data
ranging from slope, area, elevation, to geological permeability.

In summary, the available input data of interest consists of 32 features: 5 meteorological time-series
(x4[t]), augmented with 27 static catchment attributes () at each time step (daily) for 30 years,
in 531 different basins. The full list of features in x4[t] and s are shown in appendix A. As for



the ground truth or observed output data, we will use the daily streamflow values over the 20 years
time period also found in the CAMELS dataset, as collected by United States Geological Services
(USGS).

4 Methods

4.1 Model architecture

The proposed A-GRU architecture is modified to take in two input vectors z4[t] and z, at each
time step. x5 will be used to augment data at each time step of z4[t]. Our intuition was that an
A-GRU would provide the same memory capability of an LSTM in learning long-term hydrological
dependencies without explicitly requiring a forget gate and output gate. Another important distinction
of A-GRU would be that both x4[t] and z, inputs will control information flow on all gates, as
opposed to our baseline EA-LSTM where the two input vectors each control different gates (section
2). Our proposed A-GRU model is illustrated in figure 2.
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Figure 2: Visualization of the proposed Adapted-GRU showing the data flow across different gates
and activations.

The egs. (1) to (5) describe the forward pass through the A-GRU, where ¢ is an input gate, which
does not change over time for a basin, x; are the static inputs and z4[t] are the dynamic inputs (e.g.,
meteorological forcings) at time step ¢ (1 < ¢ < 7). Similarly, g[t] is the cell input, h[t] is the
recurrent input, and c[t] is the cell state. One major difference we have in A-GRU compared to
EA-LSTM is that it has the reset gate instead of the forget gate, and we no longer use the output gate.
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4.2 Loss function and evaluation metric

The Loss function used at each time step of A-GRU cell is the Nash-Sutcliffe Efficiency Metric (NSE)
[3] as shown in equation 6.B represents the number of basins, /N is the number of samples (days) per
basin. ¥, is the prediction of sample n, and y,, is the observation. s(b) is the standard deviation of
the discharge in basin b, and e is just a small positive term to prevent zero division.
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NSE is a commonly used number to evaluate physical models in Hydrology. To compare the model
results, we used the NSE shown in equation 7 for each basin and reported the median score across all
531 basins as our evaluation metric. Good predictions have NSE closer to 1.
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5 Experiments/Results/Discussion

5.1 Hyperparameter experiments

In order to tune the hyperparameters of A-GRU in our local machines, we trained a smaller subset of
33 basins over 1 year period and validated it over a different 1 year period. The various combinations
of hyperparameters were based on our intuition of working with the model and the baseline, which is
reported in appendix B, along with the results. We ran the model on the entire dataset (531 basins
over 19 years) using the most promising hyperparameter combinations based on the NSE scores of 33
basins’ training and evaluation. Figure 3a illustrates the evaluation metrics (Median NSE scores of
33 basins) for each hyperparameter combination on both training and validation dataset of 33 basins.
Using this plot we were able to identify the hyperparameter sets with the least bias-variance gaps,
which we then used to tune the hyperparameters of the entire dataset. Results of the latter run on the
whole dataset can be seen in figure 3b.
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(a) NSE median values of the 33 basins using different (b) NSE median values of the entire dataset with selected
hyperparameter combinations (EA-LSTM vs. A-GRU) hyperparameters.

Figure 3: NSE median values as metric. Comparison between training set and development set on
(a) small and (b) whole dataset

5.2 Results and discussion

As can be seen from figure 3a, AGRU’s development set median NSE score came very close (within
98%) to EA-LSTM’s median NSE score, but was not able to outperform it. Figure 4 shows the results
of running A-GRU and EA-LSTM across 531 basins over the available time-period in statistical
curves: Probability Distribution Function (PDF) and Cumulative Distribution Function (CDF). One
can note that hyperparameter set 8 of A-GRU results have one of the best NSE distribution with
higher probable values. Recall that this set had the lowest variance when analysing only 33 basins on
figure 3a.

Furthermore, figure 5 shows our justification for invoking early-stopping on our hyperparameter set 8
of A-GRU. We see that at epoch 15, set 8 yields a much better median NSE score over the dataset
compared to epoch 30, which is what the baseline EA-LSTM is tuned to. Hence, with a combination
of hyperparameter tuning and early stopping, we were able to get a much better performance out of
A-GRU which is comparable to EA-LSTM results. Please refer to appendix B for all our intermediate
results of hyperparameter tuning efforts.



Cumulative NSE distribution of 531 basins:
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Figure 4: Statistical analyses (probability distribution and cumulative distribution functions) of
selected hyperparameter sets for A-GRU as well as the baseline EA-LSTM.

Cumulative NSE distribution of 531 basins:

NSE distribution of 531 basins on train set NSE distribution of 531 basins on dev set dev set (full line), train set (dashed line)
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Figure 5: Statistical analyses of epochs 15 and 30 of hyperparameter set 8 in A-GRU compared to
EA-LSTM baseline.

6 Conclusion/Future Work

With the increasing digitization of hydrological data with remote sensing products, computational
cost will become crucial in future hydrological data-driven endeavors. Although researchers have
shown that LSTM yields promising results compared to the physical heuristic models, it has high
computational cost associated with its large number of learnable parameters and gates. In this paper,
we were able to conclude that a simpler Recurrent Neural network model like the Adapted-GRU was
able to perform almost as well as the EA-LSTM baseline (based on NSE score metric) with lesser
learnable parameters,epochs, and overall runtime. Moving forward, we believe reducing the learning
rate and increasing the regularization efforts in our model could increase its performance even further,
possibly surpassing the baseline EA-LSTM.

7 Contributions

All team members with different academic/professional backgrounds contributed to each project task
uniquely in delivering the final products.
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A Appendix: input data

The figure 6 reports the complete list of 32 input features (both static and dynamic) at each time step
of A-GRU.

Meteorological forcing data

Maximum air temp
Minimum air temp
Precipitation
Radiation

Vapor pressure

2 m daily maximum air temperature (°C)
2 m daily minimum air temperature (°C)
Average daily precipitation (mm/day)
Surface-incident solar radiation (W/m?)

Near-surface daily average (P,;)

Static catchment attributes

Precipitation mean
PET mean
Aridity index

Precip seasonality

Snow fraction
High precipitation frequency
High precip duration

Low precip frequency

Low precip duration

Elevation
Slope

Area

Forest fraction
LAI max

LAI difference
GVF max

GVF difference

Soil depth (Pelletier)
Soil depth (STATSGO)
Soil Porosity

Soil conductivity

Max water content
Sand fraction

Silt fraction

Clay fraction

Carbonate rocks fraction

Geological permeability

Mean daily precipitation.

Mean daily potential evapotranspiration

Ratio of Mean PET to Mean Precipitation

Estimated by representing annual

precipitation and temperature as sin waves

Positive (negative) values indicate precipitation peaks
during the summer (winter). Values of ~0 indicate
uniform precipitation throughout the year.

Fraction of precipitation falling on days with temp < 0°C.
Frequency of days with < 5x mean daily precipitation

Average duration of high precipitation events

(number of consecutive days with < 5x mean daily precipitation).

Frequency of dry days (< 1 mm/day).
Average duration of dry periods

(number of consecutive days with precipitation < 1 mm/day).

Catchment mean elevation.

Catchment mean slope.

Catchment area.

Fraction of catchment covered by forest.

Maximum monthly mean of leaf area index.

Difference between the max. and min. mean of the leaf area index.

Maximum monthly mean of green vegetation fraction.

Difference between the maximum and minimum monthly mean of the

green vegetation fraction.

Depth to bedrock (maximum 50 m).
Soil depth (maximum 1.5 m).
Volumetric porosity.

Saturated hydraulic conductivity.
Maximum water content of the soil.
Fraction of sand in the soil.

Fraction of silt in the soil.

Fraction of clay in the soil.

Fraction of the catchment area characterized as
“carbonate sedimentary rocks.”

Surface permeability (logl10).

Figure 6: Table with input features to the network.



B Appendix: Hyperparameters tuning

The figure 7 reports the hyperparameters set used on the small set with A-GRU network. It also has
the hyperparameters used by [4] on EA-LSTM network. Note that only some set were used for the
whole dataset.

Reduced data: 33 basins and 1 year
Architeture Hyperparameters Scores

Set_name Type Batch_size |Dropout_rate |hidden_size |leaming_rate |seq_length I NSE_Median_dev |NSE_Median_train Var

EALSTM EALSTM 256 0.4 256 0.001 270 0.444188 0.620938 0.17675
AGRU_hps 0 AGRU 256 0.4 256 0.001 270 0.59454 0.850446 0.255906
AGRU_hps_1 AGRU 512 0.7 512 0.001 128 0.563672 0.795438 0.231766
AGRU_hps_2 AGRU 512 0.7 512 0.001 270 0.552055 0.793847 0.241792
AGRU_hps_3 AGRU 512 0.4 512 0.001 128 0.564439 0.824345 0.259906
AGRU_hps_4 AGRU 512 0 256 0.001 270 0.614324 0.842914 0.22859
AGRU_hps_5 AGRU 512 0.1 256 0.001 270 0.571053 0.838061 0.267008
AGRU_hps_6 AGRU 512 0.4 256 0.001 512 0.563549 0.795275 0.231726
AGRU_hps_7 AGRU 512 0.2 256 0.0005 270 0.581658 0.758361 0.176703
AGRU_hps_8 AGRU 512 0.7 256 0.0005 270 0.542044 0.7074 0.165356
AGRU_hps_9 AGRU 512 0.4 256 0.0002 270 0.535865 0.722352 0.186487
AGRU_hps_10 [AGRU 256 0.4 256 0.0005 270 0.574157 0.771241 0.197084
AGRU_hps_11 [AGRU 256 0.3 256 0.00075 270 0.616116 0.835072 0.218956
AGRU_hps 12 [AGRU 128 0.3 256 0.00075 270 0.599737 0.889241 0.289504
AGRU_hps_13 [AGRU 64 0.3 256 0.00075 270 0.638825 0.917594 0.278769
AGRU_hps_14 |[AGRU 32 0.3 256 0.00075 270 0.619379 0.940527 0.321148

Figure 7: Table with hyperparameters values for each tested set on small data. The scores of figure
3a are also reported.

The figure 8 illustrates the NSE distributions, using the small set, on the used basins.
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Figure 8: Statistical analyses (probability distribution and cumulative distribution functions) of

selected hyperparameter sets for A-GRU as well as the baseline EA-LSTM on the small set.
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