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1 Introduction to Problem

The ultimate goal of surf forecasting is to transform data (wave height, period, direction) gathered
from a complex network of buoys across the ocean into a spot-by-spot temporal prediction of the
quality of breaking waves. Excitingly, there exists a system of equations to model swell as it moves
through deep-water ocean systems, and can be used to, very successfully, track the time frames
of swell arrival and disappearance.l'] However, the quality of the wave (speed of wave breaking,
homogeneity of speed, length of ride able portion, size of wave, availability for tricks, availability
for barrels efc.) are largely determined by the underwater topography (bathymetry) and the amount
and direction of local wind at near the surf spot at the time of breaking.!?! Thus the quality of the
wave becomes a complex and difficult to model function of the swell that generates it (information
available from buoy systems), the current tide conditions (information available from tide charts), and
the wind conditions (information available from anemometer data). A much easier route to predicting
wave quality from a multitude of input parameters is to use machine learning algorithms. However,
for this to be implicated, there needs to exist an accurate way to measure the quality of waves.

Currently, wave quality measurement is a subjective approach in which a surf forecaster
watches a camera of breaking waves for a short duration of time and makes an immediate
classification of the conditions (for example, the leading surf forecasting service, Surfline, employs
a rating system of poor, fair, good, and the always coveted, epic).l*! Not only is this classification
system subjective to the forecasters own human bias, but it is formed from a relatively short visual
analysis of an environment that is rapidly changing. We envision that a less subjective, robust, system
of wave classification is needed to assess the quality of waves to enable machine learning algorithms
to successfully and reliably match ocean and atmospheric conditions to the quality of wave. The
development of this tool would enable future wave classification (size, speed, homogeneity, efc.)
into a robust analysis for machine learning assisted forecasting. To do this we will set to implement
a video classifier that can identify a surfer who is currently surfing on a wave, separate from a
surfer who is sitting in the water. By detecting the surfer on the wave over time and converting the
surfer’s position over time into a vector we can begin to quantitatively describe the movement of a
wave (because a surfer can only surf a surfable wave).The project goal is to accurately be able to
detect a surfer surfing at 1 location with high enough accuracy and precision to enable object
tracking. A supplementary goal of this project (beyond the scope of this report) is a location
agnostic surf detector. The ultimate goal of this project (outside the scope of this report) is to
train a separate model to predict wave conditions with less bias by using the information from
this model.

2 Methods
2.1 Dataset and Methods

We established a pipeline to generate our dataset for training. We downloaded videos manually from
Surfline.com, and cut the video at 2 frames per second regardless of if a surfer is surfing or not.
‘We manually labeled the images using Labelbox. The output from Labelbox is a JSON file which
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Figure 1: Training and Dev image description with dataset and hyperparameter modifications

contains URLs to the stored images (AWS S3 storage) and the bounding box coordinates associated
with each image. This JSON is then transferred into labels (COCO format) for implementation with
the Github repository.

We only label instances of surfers actively surfing. Our dataset is composed of images
from Pleasure Point (California), Rocky Point (Hawaii), and Sewers (California), and was chosen to
include footage from different weather conditions (sunrise, sunset, mid day sunny, mid day cloudy).
We generated two training sets: (1) 3000 objects (surfers) from pleasure point in 2022 images and
(2) 1000 objects from (each) pleasure point, sewers and rocky point in 2538 images (Figure [T). We
similarly generated two dev sets: (1) 1000 objects from pleasure point in 674 images and (2) 333
objects from (each) pleasure point, sewers and rocky point in 786 images. The separation of the
training sets and dev sets allow us to explore which data collection strategy is most effective at
training a model (with a small amount of data) for (1) a location-specific model and (2) a location
agnostic model. We use the 333 objects at Pleasure Point as a test set for a camera specific model, as
the training only allows the epoch-dependent training of 1 dev set. To further explore the creation of
a camera agnostic trained model, we include 361 objects (329 images) and 341 objects (321 images)
from Snapper Rocks (Australia) and Kirra (Australia) as a test set

2.2 Model Architecture

The computer vision network we chose to implement is a derivative of You Only Look Once
(YOLO). ¥ We chose the YOLO-V3 implementation with a spatial pyramid pooling layer
because it demonstrated the highest performance on the COCO dataset of the available, built
YOLO networks®/. We are using an implementation in pytorch that has modular control over
hyper-parameters, detection parameters, and yolo configurations.[® Due to the limited size of
our datasest we chose to approach the problem using transfer learning, where we could leverage
pretrained low-level feature knowledge that is common to many photos, and focus on training
the final detector. In our transfer learning implementation, all layers contain weights pretrained
on the COCO dataset. The weights of all but 3 layers are fixed in the training phase, which
correspond to the 3 different classification layers within the CNN (Appendix Figure [f] shows an
example of this). Pretrained weights should be able to detect a surfer, surfing, and classify it with
a label. This would indicate that the lower and higher level features embedded in the network are
already apt to detect the features of a surfer. An ideal pretrained weight would also not detect
a surfer waiting for a wave, as these are not objects we want our detector to detect. We chose
to implement weights from this repository because it was able to detect, a surfer surfing as a
human, albeit with extremely poor accuracy. Moreover, it would not classify surfers sitting in
the water as persons. Weights trained on the COCO dataset achieve these criteria (Appendix Figure[7).

The loss function employed in this model is a Generalized Intersection over Union (GloU)
loss function, which incorporates both the interszection over union and a penalty for the smallest



convex hull between the ground truth and detected object, useful in differentiating when there is no
intersection between the prediction and ground truth.['°) The model employs an adam optimizer
for gradient descent. The standard learning rate decay for this model is a : aiy 0.01 : 0.0005. The
model employs hue saturation value augmentation, which randomly makes minor alterations to the
hue, saturation, and color value, to prevent over-fitting. Our minibatch size was maximized such that
the optomizer could run with our available memory (either 8 or 16 images per minibatch).

2.3 Proposed Tuning

In the exploration of training (1) a model that functions at 1 location (pleasure point) and (2) a
location agnostic model we propose to (i) compare training set 1 and 2 (ii) combine training set 1
and 2 and compare to individual training set 1 and 2 data (iii) augment training set 1 (image rotation
(random, less than 5 degrees) and image scaling (random, less than 5% increase and decrease) (iv)
generate a larger training set 1 by introducing 10,000 new "dirty" images from pleasure point labeled
using the training set 1 model (unsupervised) and (v) diminishing the learning rate decay (ayg : oy
0.01 : 0.0005 (standard) to 0.01 : 0.005 (new)).

3 Results and discussion
3.1 Selection of Dataset

Comparing two different training datasets. Purpose: We explore which training set (1,2)
performs best at an individual location, or multiple locations. Training Regimen: 200 epochs,
start with pretrained weights on COCO dataset, select best performing epoch (F1 score) on dev
set 1 for analysis (training set 1 - epoch 133, training set 2 - epoch 197). Results Training set 1
performed better (F1 + mAP@0.5) on dev set 1 (Figure[2JA). Both training sets seemed to realize
only small improvements after epoch 100. Training set 2 performed better on dev set 2 (F1) (Fig-
ure[2B), because it performed drastically better at locations that training set 1 hadn’t seen (Figure[2|C).
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Figure 2: Comparing Models trained with Training set 1 and 2. A Performance metrics on Dev
Set 1 from training set 1 and training set 2 as a function of epoch. B F1 performance metric on Dev
set 1 and Dev Set 2 from training set 1 ( epoch 133) and training set 2 (epoch 197). C F1 performance
metric on images (categorized by location) in Dev Set 2 from training set 1 ( epoch 133) and training
set 2 (epoch 197).

Exploration of combined dataset training. Purpose: We explore if we can improve train-
ing set 1 on dev set 1 and 2 by including training data from different locations. Training Regimen:
Start with weights from best epoch from training set 1 on dev set 1 (epoch 133), train until 200
epochs (67 more) with 5000 objects (3000 from training set 1, 2000 from training set 2). Results:
Introduction of new data increases training loss value , which asymptotes higher than without new
training data (Figure 3JA). Introduction of new training data does not make dramatic improvement
(F1 metric) on dev set 1 (Figure[3]B) but improves performance on dev 2 locations to the original
performance of training set 2 (Figure 3C).

3.2 Application of Image Augmentation

Purpose: Dataset 1 under-performs when surfer is performing maneuvers (compressed and rotated
body); artificially rotate and compress surfers tﬁ) improve data. Training Regimen: Start with
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Figure 3: Combined training data performance. A GIoU loss on the training set 1 and training
set 1 after introduction of images from training set 2 (Rocky Point (1000 objects), Sewers(1000
objects)) at epoch 133. B Performance metrics on Dev Set 1 from training set 1 and training set
1 after introduction of training data from training set 2 at epoch 133 as a function of epoch. C F1
performance metric on images (categorized by location) in Dev Set 2 from training set 1 (epoch 133),
training set 2 (epoch 197), and training set 1 after introduction of training set 2 data at epoch 133
(epoch 200).

weights trained on COCO, train until 104 epochs, select best performing epoch (F1 score) on dev set 1
for analysis (epoch 104), compare to training set 1 and 2. Results: Failed Hypothesis. Introduction
of augmentation lowers performance on dev set 1 (F1, mAP@0.5) on every epoch compared to
training set 1 (Figure 4A). However, augmentation improves performance (F1) on location data (Dev
set 2: Rocky Point, Sewers) not seen in the training set(Figure @B).
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Figure 4: Image augmentation in Training Set 1 performance. A Performance metrics on Dev
Set 1 from training set 1 and training set 1 with image augmentation (<= |5|° degree rotation,
<= 5% scale) (purple) as a function of epoch. B Categorized location performance from model
trained on training set 1 (epoch 133), training set 2 (epoch 197), and training set 1 with image
augmentation (epoch 104).

3.3 Unsupervised Dataset Supplementation

Purpose: Improve performance on pleasure point location (dev set 1) through more instances of
surfers that the model has not seen without hand labeling data. New labels are generated from best
performing training set 1 model on new images. Training Regimen: Start with weights from best
epoch from training set 1 on dev set 1 (epoch 133), train until 160 epochs (27 more, epochs are longer,
include more data) with 10,000 new "dirty" labeled images in the training set. Perform analysis
with final epoch (160). New images are from Pleasure Point, labels generated from model trained
on training set 1 (epoch 133) at confidence interval p > 0.2 (selected to maximize F1 on dev set 1).
Results: Failed hypothesis. While new training data lowers training loss function (Figure [JA), it
does not substantially improve performance on dev set 1 (Figure[5B) or images at Pleasure Point in
dev set 2 (pseudo-test set, Figure[5IC). 4
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Figure 5: Unsupervised data supplementation performance. A GIoU loss on the training set 1 and
training set 1 after introduction of "dirty" (unsupervised) training data at epoch 133. B Performance
metrics on Dev Set 1 from training set 1 and training set 1 after introduction of "dirty" (unsupervised)
training data at epoch 133 as a function of epoch. F1 performance metric on images from Pleasure
Point in Dev Set 2 (test set) from training set 1 (epoch 133) and training set 1 after introduction of
"dirty" (unsupervised) training data at epoch 133 (epoch 160).

3.4 Changing Learning Rate Decay

Purpose: We are worried that asymptotic performance behavior (training set 1 on dev set 1) around
epoch 100 is due to learning rate decay, not a global minimum. We investigate this by diminishing
the effect of learning rate decay (ag : a ¢ 0.01 : 0.0005 (standard) to 0.01 : 0.005 (new)). Training
Regimen: Start with weights trained on COCO dataset. Train until 135 epochs with training set 1.
Compare training set loss and dev set 1 performance (F1) to standard learning rate decay. Results:
Failed Hypothesis. Qualitative curve of the loss function and F1 metric as a function of epoch are
very similar (Figure([§), indicating that they are both approaching the same global minimum for the
training set - that the asymptote is not due to too low of a learning rate missing the minimum.

3.5 Testing on Unseen Locations

Purpose: Explore the extent to which our different trained models function as a location agnostic
surfer detector by testing on images from locations not encountered (Figure OA). Results: Our
models perform worse on images from locations they have not seen (Figure [9B). Models trained with
diverse data (Training set 2 and Training set 1+2) perform the best. Models perform better at Snapper
Rocks than Kirra, likely due to the camera angle; the camera in Snapper Rocks is positioned similar
to cameras from other locations.

4 Conclusion

Our model works well (this is it functioning while Joseph Surfs a wave - https://photos.app.
goo.gl/wrxe2SuoK8PMpfKC6). However, it can still be improved. Through this process we have
gained insight into transfer learning using small datasets. To detect surfers from a location, it is
important to have adequate training data from that location (Training set 1 performs better on dev set
1 than training set 2, no trained models performed particularly well on locations they hadn’t seen).
Including training data from other locations does not hinder performance on a given location, although
it doesn’t particularly help (addition of training set 2 to training set 1 did very little). Unsupervised
trained data and augmented data do not improve or detract from the performance at a given location.
Not all cameras are created equal; Sewers represents an easier location to train on, Rocky Point
represents a more difficult location to train on - this is likely due to the homogeneity in size of surfers
that can be detected at sewers, as opposed to rocky point. We envision this model can be improved
with error analysis and more training data. However, while training we noticed that, even as trained
camera watchers, it was difficult to detect an instance of a surfer surfing in a still frame. However,
when a surfer was surfing in video, there was no doubt about the surfers activity. We hypothesize a
four dimensional CNN would better be able to detect surfers through learning easier to recognize
patterns of temporal motion, but present a greaterSIabeling challenge.
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6 Appendix Figures

202 103.Conv2d.weight False 32768 [128, 256, 1, 1] -0.000393 0.0485
203 103.BatchNorm2d.weight False 128 [128] 1.43 0.0929
204 103.BatchNorm2d.bias False 128 [128] 0.27 0.107
205 106.Conv2d.weight False 49152 [128, 384, 1, 1] -0.000402 0.0583
206 106.BatchNorm2d.weight False 128 [128] 0.978 0.138
207 106.BatchNorm2d.bias False 128 [128] 0.0854 0.282
208 107.Conv2d.weight False 294912 [256, 128, 3, 3] -0.000939 0.0299
209 107.BatchNorm2d.weight False 256 [256] 0.981 0.0992
210 107.BatchNorm2d.bias False 256 [256] -0.201 0.123
211 108.Conv2d.weight False 32768 [128, 256, 1, 1] -0.00181 0.0623
212 108.BatchNorm2d.weight False 128 [128] 1 0.125
213 108.BatchNorm2d.bias False 128 [128] -0.0839 0.218
214 109.Conv2d.weight False 294912 [256, 128, 3, 3] -0.00117 0.0273
215 109.BatchNorm2d.weight False 256 [256] 0.994 0.104
216 109.BatchNorm2d.bias False 256 [256] -0.11 0.146
217 110. Conv2d.weight False 32768 [128, 256, 1, 1]  -0.00416 0.0616
218 110.BatchNorm2d.weight False 128 [128] 0.995 0.148
219 110.BatchNorm2d.bias False 128 [128] 0.0842 0.346
220 111.Conv2d.weight False 294912 [256, 128, 3, 3] -0.000464 0.0283
221 111.BatchNorm2d.weight False 256 [256] 1.22 0.36
222 111.BatchNorm2d.bias 256 [256] 0.374 0.278
223 112.Conv2d.weight True 65280 [255, 256, 1, 1] -0.0345 0.0912
224 112.Conv2d.bias True 255 [255] -0.446 0.338
Model Summary: 225 layers, 6.29987e+07 parameteriy gradients

Figure 6: Training Model using transfer learning. A Here we show how we set the final classifica-
tion layer to be updated via training. "True" indicates we are updating the weights, while where the
rest of the layer weights are "False". Image used from github repository. (‘]
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Figure 7: Yolo out of the box weights A Example of yolo detecting surfer with pretrained weights,
while ignoring surfers sitting in the water. B Incorrect detection of boat instead of surfer



Learning Rate Decay Study
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Figure 8: Testing effects of diminished learning rate decay. GIoU (left axis) and F1 on Dev Set 1
(Right axis) plotted as a function of epoch for standard and diminished learning rate decay.
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Figure 9: Testing trained models on unseen locations. A Example labeled frames from Kirra (341
objects in test set) and Snapper Rocks (361 objects in test set). B F1 performance metrics from each
of the trained models on Kirra and Snapper Rocks.
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