
Covid-Net-Lite: SARS-CoV-2 Detection with Data
Augmentation and a Lightweight Convolutional

Neural Network

Miguel Ayala
Department of Computer Science

Stanford University
mayala3@stanford.edu

Abstract

In this study we show that
with a relatively simple data
augmentation technique and a
lightweight convolutional neu-
ral network we are able to de-
tect SARS-CoV-2 from chest
radiographs at levels exceed-
ing or matching state of the
art models. Covid-Net-Lite,
the model we create, only re-
quires 2 convolutional layers, a
representation size of around
0.15MB per image and only
729 trainable parameters. De-
spite this, when trained on
an augmented and distorted
dataset of 9654 radiographs we
are able to overcome the prob-
lems created by the lack of
SARS-CoV-2 images and out-
perform the likes of VGGNet
and ResNet50 with an accuracy
of 98.69%.

1 Motivation

1.1 A Global Pandemic

As of June 8 2020, SARS-CoV-2, a coronavirus,
has spread worldwide infecting 6,931,000 people
and causing 400,857 deaths [17]. One of the main
issues preventing the pandemic’s suppression has
been the lack of adequate testing.
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1.2 Limitations on Testing

For a variety of reasons, the number of testing
kits produced and the number of kits that can
be analyzed at any given time falls far short of
the numbers 1 seen in countries that have suc-
cessfully stemmed the spread of the disease [14].
If production cannot be scaled up to necessary
levels, alternative tests to the current molecular-
based approaches should be explored. Aside from
serological-based tests [11] [20], there has been
promise in detection of the virus via chest radio-
graphy. Early findings from China suggest that
patients with SARS-CoV-2 seem to exhibit abnor-
mal structural differences in their lungs including
small pleural effusions and pulmonary consoli-
dation [22]. It may therefore, be worthwhile to
see if analysis of chest scans may help diagnose
SARS-CoV-2 patients. Additionally, chest scans
are a promising avenue to explore because though
the equipment required is widespread [13], the
expertise needed to provide accurate readings is
much more scarce [8].

2 Previous Approaches

2.1 CNNs + Pulmonary Health

There has been plenty of work in using CNNs
to classify various pulmonary ailments such as
pneumonia, asthma and tuberculosis [2] [9] [3]
[15] with reasonable success. Aside from the de-
tection of these diseases other researchers have
used class activation maps to localize a host of nu-
merous pathologies, to give a more granular view
of patient lung health [12]. In some cases, the
performance of these systems is better than that
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of experienced radiologists in terms of accuracy
and specificity.

2.2 CNNs + SARS-CoV-2

Given the recent success of CNNs in analyzing
pulmonary radiographs, it is only natural that re-
searchers have attempted to use CNNs to help de-
tect SARS-CoV-2 from chest radiographs. Wang
et al [16] curated a large dataset of radiographs
from multiple sources and built a deep neural net-
work - COVID-Net - of stacked convolutional
layers. The modules were arranged to promote
long range connectivity. In the study they com-
pared the results of their network to those of
VGG-19 and ResNet-50 when run on the same
dataset. Narin et al [10] used pre-trained models
followed by an average pooling layer, ReLU ac-
tivation and a softmax layer to predict whether
or not a patient had SARS-CoV-2. They experi-
mented on 50 positive images and 50 negative im-
ages using pretrained models from InceptionV3,
ResNet50 and InceptionResNetV2. Abbas et al
[1] attempted a similar approach in their DeTraC
model where the process was broken down into
several phases consisting of a pretrained CNN
and transfer learning with ResNet18. While these
papers all produce accuracy scores well above
85%, there are improvements that can be made
to their datasets. Though the Narin paper does
consciously attempt to balance their data, only
having 100 examples in training may severely
limit their model’s real world performance. The
Wang paper found many more examples of SARS-
CoV-2 radiographs, however, only 358 of their
13,975 examples are SARS-CoV-2 examples. It is
possible that their model may perform even better
with a balanced dataset. The Abbas study’s data
approach combined balance and volume by us-
ing data augmentation. Nevertheless, they could
probably have benefited from having more than
1,700 examples. Additionally these models may
be better suited for real life use if they were de-
signed more economically. All of the models
reviewed are incredibly large. The smallest of the
models surveyed - COVID-Net - had 11.5 million
parameters. If the idea is to make testing as acces-
sible as possible, an ideal model would be much
smaller than this.

3 Goals

What differentiates this study from previous ones
is that, in addition to test accuracy, it is focused
on generating a sizeable balanced dataset and
minimizing the resources needed to train or use
the model. Both of these goals are necessary
because we believe that the former will help make

the latter feasible. These goals will help produce a
model that may be helpful in providing accesible
testing on a large-scale.

4 Data

4.1 Datasets

This study uses images from 2 main sources. The
first is a dataset curated by Praveen Govi [6]. The
dataset is composed of images collected from
various countries comprising 1576 healthy in-
dividuals, 58 patients who have tested positive
for SARS-CoV-2 and 4276 patients with respi-
ratory issues other than SARS-CoV-2. The sec-
ond source is the Covid-Chestxray-Dataset which
was curated by researchers from the University
of Montreal [4]. In total it has 343 frontal chest
X-Ray images including 238 SARS-CoV-2 im-
ages. While this leaves us with a good number
of images overall, it is still incredibly imbalanced
and varied in terms of dimensionality. Image
files were incredibly large with some exceeding
dimensions of 1300 x 1400 x 3.

4.2 Preprocessing

The goal of preprocessing the images was to min-
imize the resource overhead on each run without
significant losses in model performance. To that
end, we decided to run a simple logistic regres-
sion model on datasets with varying image dimen-
sions and normalization strategies. The variants
we tested were 1-channel grayscale, 3-channel
colour, 32 x 32 image size, 64 x 64 image size,
128 x 128 image size, 256 x 256 image size, orig-
inal image size, normalized and unnormalized.
After a grid search on these, we surmised that we
could reduce each image to normalized 64 x 64
grayscale (one channel) representations without
any significant loss in performance. In fact, it ac-
tually helped to reduce overfitting on the training
set. Below is a representation of our images after
preprocessing:

4.3 Resampling

While the preprocessing will help our model per-
form efficiently, it does not help us solve the im-
balance problem in the dataset. To fix this, we
will use data resampling with a few modifications.
Let ρ be the number of positive examples in our
training set. Let K = ρ

1−ρ . K is equivalent to
the number of positive examples in our dataset
for every negative examples. Because we have
less positive examples than negative examples,
we balance our dataset by sampling each positive
example 1

K times. Mathematically resampling is
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Figure 1: A comparison of our preprocessed im-
ages. We have a healthy radiograph (Top-Left), a
pneumonia positive radiograph (Top-Right) and a
SARS-CoV-2 positive radiograph (Bottom).

equivalent to a reweighting of the positive exam-
ples. Each positive example will have a weight
1
K times greater than any negative example. In
other words, each positive example has a greater
influence on the model’s performance. While this
method is effective in reducing the influence of
negative examples, it can cause the model to over-
fit on these positive examples which is what we
see here. With such a high resampling factor, ap-
proximately 22, it is plausible that we end up over
fitting on the small set of positive examples we
have in the dataset.

4.4 Distortion

As a result, we distort the resampled images so
that they appear as if from the same distribution
yet are different enough so that the model can
generalize better.We stochastically apply 2 dis-

tortion techniques: flipping and Gaussian noise
injection. Flipping involves a horizontal reflec-
tion of the image where the axis is at x = 32.
Gaussian noise involves generating a 64 x 64 ma-
trix of pixels sampled from a normal distribution
and adding this matrix to our existing image. We
evaluate a uniformly random Bernoulli variable
to see whether or not we flip the image. Similarly,
we evaluate another uniformly random variable to
see whether or not we apply our Gaussian noise
to the image. Additionally, the parameters of the
normal distribution used to generate the noise is
sampled from a random distribution. The addi-
tion of these probabilistic decisions ensures that
the chance of any 2 images being the same is
negligible.

Figure 2: A comparison of a SARS-CoV-2 image
before and after applying our distortion

4.5 Augmentation Results

The process of resampling and distorting our
SARS-CoV-2 positive examples has the effect
of making our dataset more separable. To visual-
ize this, we use t-distributed Stochastic Neighbor
Embedding - a process for reducing the dimen-
sions of datapoints non-linearly. It will allow
us to visualize our datasets as if they were in 2
dimensions:

In our t-SNE visualization of the unagumented
data, we see that there are very few SARS-CoV-
2 datapoints and that there is heavy overlap be-
tween these points and the non-SARS-CoV-2 dat-
apoints. However, after augmentation we see
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Figure 3: t-SNE visualizations of our trainset be-
fore (left) and after (right) augmentation. A green
circle represents a radiograph with no SARS-
CoV-2, while a blue cross represents a radiograph
with SARS-CoV-2.

that there is much clearer separation between the
blue points and the green points. This gives us
hope that SARS-CoV-2 examples and non-SARS-
CoV-2 examples will be separable with high-
dimensional models. The only concern is that
this process of augmentation may have shifted
the distribution of our positive examples so much
so that our model fails to generalize to the origi-
nal distribution of SARS-CoV-2 radiographs. The
outcome of this should be apparent in our model’s
test results. Otherwise, this augmentation ap-
pears to have been a success. Overall, after re-
sampling and preprocessing we have a dataset
of 11,028 images. The train set has 9654 im-
ages including 4433 SARS-CoV-2 positive exam-
ples and 5221 SARS-CoV-2 negative examples
(healthy and non-healthy). Our validation and test
set do not contain any unaugmented images and
are still imbalanced. Each has 687, of which 63
are SARS-CoV-2 positive and 624 of which are
SARS-CoV-2 negative.

5 Model

5.1 Problem Formulation

Our task is a simple binary classification task.
As such, we model our loss as binary cross
entropy loss: − 1

N

∑N
i y

(i) log(h(x(i))) + (1 −

y(i)) log(1−h(x(i))) where h(x(i)) is the predic-
tion of our model.

5.2 Covid-Net-Lite Architecture

To satisfy our requirement of low resource over-
head, we design a CNN with only 2 convolutional
layers.

Our weights are initialized with Xavier initializa-
tion. The first convolutional layer has 8 filters
with a kernel size of 4 and ’SAME’ padding. Af-
ter this is a max pool layer with a pool size of 8.
The second convolutional layer has 16 filters that
each have a kernel size of 2 and ’SAME’ padding.
The following max pool layer has a pool size of 4.
Each convolutional layer is followed by a ReLU
activation and a final fully connected layer with
sigmoid activation produces our prediction. In
total we only have 729 trainable parameters. The
model utilizes ADAM optimization.

5.3 Hyperparameters

The only hyperparameter that we tuned on the
validation set was the number of epochs to train
the model. We tested 10, 50, 100, 150 and 200
epochs. We found that 100 epochs had the best
balance between bias and variance.

5.4 Implementation

In keeping with our requirements for a
lightweight accesible model, we wanted to ensure
that the our network was trainable and executable
on standard hardware. Our model was created
on top of Keras and Tensorflow and trained on a
CPU with 16GB of memory. With this setup, 100
epochs of training took around 20 mins.

6 Results

Below are the results for Covid-Net-Lite trained
on the original non-augmented dataset and on the
augmented dataset over 100 epochs.

Non-Augmented Augmented
Train Accuracy 95.72% 99.96%
Test Accuracy 90.83% 98.69%

7 Analysis

7.1 Non-Augmented vs Augmented

While it is impressive that our augmented dataset
achieved higher train and test accuracies, it is
even more impressive considering the perfor-
mance on SARS-CoV-2 positive examples. The
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Figure 4: Architecture Diagram

non-augmented scores are high, but the model did
not correctly predict any of the positive examples.
In fact, with so few positive examples in the non-
augmented dataset, the model learned to just pre-
dict non-SARS-CoV-2 every single time. Clearly,
the data augmentation was able to reweight the
positive examples without changing the distribu-
tion or overfitting, resulting in not only higher
performance but also higher balanced accuracy.

7.2 Covid-Net-Lite vs Other Models

The accuracy scores achieved by Covid-Net-Lite
exceeded those of the models produced by Wang
et al, Abbas et al and Narin et al.

Model Test Accuracy
COVID-Net 93.30%
DeTraC 92.50%
VGGNet 83.00%
ResNet50 90.60%
Narin InceptionV3 97.00%
Narin InceptionResNetV2 87.00%
Covid-Net-Lite 98.69%

The only metric where it falls short is that of
recall. Covid-Net-Lite only achieves a recall of
57
63 = 0.904, which lags behind COVID-Net, the
Narin models and DeTraC.

In terms of resource overhead, Covid-Net-Lite
outperforms the others considerably. Per im-
age, the model requires a representation size
of 0.15MB. For the sake of comparison, a sin-
gle image propagated through VGGNet requires
93MB. In terms of parameters, Covid-Net-Lite
only requires 729 parameters, while COVID-Net
requires 11.75 million, VGG-19, 20.37 million
and ResNet50, 24.97 million. Overall, I think
Covid-Net-Lite achieves the goals of high accu-
racy with low resource overhead.

Figure 5: Confusion Matrix of the Covid-Net-Lite
predictions

8 Next Steps

While this was a surprising success in terms of
computation requirements and accuracy, the low
recall is concerning with a disease like Covid-19.
A high number of false positives will accelerate
the rate of the disease exponentially. Future it-
erations of Covid-Net-Lite should prioritize the
reduction of the false positive rate. One way we
can do this is by modifying the loss function so
that misclassifed positive examples incur a much
greater penalty than normal misclassifications.
Additionally, the low recall may be a result of dis-
tribution shift caused by the data augmentation.
The process of data augmentation used here was
not scientifically derived. In the future, a data
augmentation process should be engineered so
as to minimize the Kullback-Leibler divergence
of the unaugmented dataset and the augmented
dataset.

9 Github Link

https : //github.com/mayala3/covid_net
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