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Abstract 

In the aftermath of natural disasters, timely detection of where damages have happened and                           
dispatching rescue teams can save thousands of lives. To determine where efforts need to be focused, a                                 
human assessment of damage is usually required. These assessments take time and money and have                             
inherent risk. To try and solve this problem, we worked on a two-step model that would take satellite                                   
images as input, detect buildings, and determine whether or not a building is critically damaged to                               
warrant attention. Utilizing a ResNet50 infrastructure, we were able to obtain high training accuracy                           
on damage classification, above what we expect a human can achieve. However, the accuracy on our                               
testing set showed that improvements can be made to reduce variance. Our attempt at using L2                               
weights regularization is promising and given the right parameter value it is expected that the model                               
will not overfit to the training data and perform better on the testing data. For building detection, we                                   
use Mask R-CNN (based on FPN for object detection and RESNET101 backbone). However, our                           
model’s performance was suboptimal in part due to computational challenges and time restrictions we                           
faced.   

1 Introduction 

We aim to build a model that can be deployed to assist natural disaster relief efforts in                                 
developing countries. Our vision is that governments and non-governmental organizations can use                       
satellite image data to assess which cities, villages, and infrastructure is in most critical need of support                                 
following a natural disaster. We hope that the use of a deep learning model would eliminate the                                 
danger, time, and expenses associated with in-person assessments so that relief could be quickly                           
dispatched where it is most needed. 

We see our task as having 3 main steps in the overall process. The first step is building                                   
detection. The input to our first step’s algorithm is a satellite image, which is processed using a mask                                   
R-CNN and outputs x, y coordinates outlining the buildings in the image. For our second step, we                                 
perform image manipulation to crop images to a standard size and isolate buildings before feeding                             
them into our second model. We use the x, y coordinate outputs from the first model to identify the                                     
locations to crop and isolate buildings in each image. For our final step, we use the cropped images as                                     
input to our ResNet model, which predicts the damage sustained by each building and outputs a                               
binary classification - either ​no damage (or only minor damage)​, or ​major damage​. With this                             
information, the relevant authorities could be notified and support can be provided immediately. 
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2 Related Work 

Much of the previous work on this type of problem is done using convolutional neural                             
networks (CNN). One method used Ordinal Regression in combination with CNN (Ci et al., 2019) .                             1

Post-disaster building classification labels were used as ordinal variables (i.e. relative to other values on                             
an arbitrary scale). Another approach comes from a group that trained three different CNNs on                             
images at 3 different resolutions (100m, 10m, 5m) and used a combination of the information learned                               
at each level for the final model. They used residual-connections and dilated convolutions for their                             
models at each resolution (Duarte et al., 2018) . Another approach used Single Shot Multibox                           2

Detector (Li et al., 2019) , which is a target detection method based on deep learning. This method                                 3

identifies and outlines the buildings based on their level of damage.  
Limitations for the previous work on this type of problem include using only high-definition                           

images with well-defined crops of buildings, as well as using only post-disaster images from one type of                                 
natural disaster. As our project aims to use accessible satellite imagery enabling faster response times,                             
the model cannot rely on having high-definition images as inputs. Furthermore, the project hopes that                             
one algorithm can be applied to various types of natural disasters from different regions globally. 

As we wanted to dedicate most of our time to the binary classification problem, we heavily                               
relied on a Mask R-CNN project by Matterport to help us implement Mask R-CNN (He et al., 2018)                                 4

 to detect and outline buildings. 5

3 Dataset and Features 

Our dataset is the xBD labeled dataset from ​xView2.org​. The dataset is a collection of satellite                               
images from before and after natural disasters. Almost all images contain buildings which are                           
determined to be in one of 4 damage categories after the disaster (no damage, minor damage, major                                 
damage, or destroyed). The pre and post disaster images of each building are of virtually identical                               
resolution and framed in a similar area in the image. Each building also comes “pre-outlined” within its                                 
image. The csv files containing the labels indicate polygons in which each building in an image is                                 
contained, helping to locate individual buildings in each image. 

Data Statistics 

  Train Data  Dev / Test Data 

Number of images  5598  1866 

Number of buildings (pre-disaster / post)  163819 / 162787  55224 / 54862 

damage: none  117426 (72.13%)  41427 (75.5%) 

damage: minor  14980 (9.2%)  4798 (8.75%) 

1 ​Tianyu Ci, Zhen Liu, Ying Wang (2019). Assessment of the Degree of Building Damage Caused by Disaster Using Convolutional Neural Networks in                                             
Combination with Ordinal Regression. 
2 Duarte, Diogo & Nex, Francesco & Kerle, Norman & Vosselman, George (2018). Satellite Image Classification Of Building Damages Using Airborne                                         
and Satellite Image Samples in a Deep Learning Approach. 
3 Yundong Li, Wei Hu, Han Dong, and Xueyan Zhang (2019). Building Damage Detection from Post-Event AerialImagery Using Single Shot Multibox                                         
Detector  
4 ​Abdulla, W. (2017). Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow. Github. 
5 He, Kaiming & Gkioxari, Georgia & Dollár, Piotr & Girshick, Ross (2018). “Mask R-CNN” 
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damage: major  14161 (8.7%)  3850 (7.02%) 

damage: destroyed  13227 (8.13%)  3775 (6.88%) 

damage: unclassified  2993 (1.84%)  1012 (1.85%) 

Table1: Statistics on xBD labeled dataset. 
 
As part of our pre-processing, we have removed all buildings classified as “unclassified.”                         

Furthermore, after human error analysis, we determined that buildings were too pixelated for us to                             
accurately determine which class they fall in without a comparison to its pre-disaster image. Therefore,                             
we decided to combine “no damage” and “minor damage” into one category and “major damage” with                               
“destroyed” into another. We also noted that an overwhelming majority of the class distribution falls                             
under “no damage,” which could cause the model to become skewed. Hence, we further pre-processed                             
the dataset to extract a subset containing an equal number of buildings from both classes.  

To speed up training iterations, we trained our building classification model on 20,000 images                           
and tested on 5,000. The input features are images with 64 by 64 pixels, which are normalized.  

         
No damage Major damage No damage Major damage 

Figure 1: Sample building images. 

4 Methods 

Our method follows a project pipeline (Figure 2) where an input image is fed into a Mask                                 
R-CNN model for object detection. This model outputs building coordinates on an image, which are                             
then processed and cropped to feed to our binary classification model based on ResNet50 .  6

 
Figure 2: Project Pipeline 

 
For building detection, we utilized Mask R-CNN, which is based on Feature Pyramid 

Networks (FPN) for object detection and a RESNET101 backbone. We preprocessed the satellite 

6 He, Kaiming & Zhang, Xiangyu & Ren, Shaoqing & Sun, Jian (2015). “Deep Residual Learning for Image Recognition” 
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imagery and used the coordinates in our training data to create masks for each of the buildings. We 
loaded the pre-trained weights for MS COCO. The model runs a binary classifier on a lot of anchors 
over the image and returns object/no-object scores. Positive anchors are defined as anchors that have 
an IoU of greater than 0.7. Subsequently, the model applies bounding box refinement, filters out low 
confidence detections, applies non-max suppression, and generates segmentation masks.  

Satellite images and the bounding boxes for the buildings are then passed on to our second 
model to classify damages. Our damage classification model is based on the ResNet50 and is depicted 
in Figure 3. The model is a convolutional neural network with 50 hidden layers including a sigmoid 
layer as the output layer to perform the binary classification. Note that the sigmoid activation 
function,  will output a probability that an example belongs to a given class, and so a σ =  1

1+e−x  
decision can be made by comparing the probability with a given threshold. Each convolutional block 
and identity block consists of a series of convolutional layers, batch normalization, and ReLU layers, 
with a shortcut from the block’s start to the block’s end.  Convolutional layers are utilized to train 
parameters arranged as filters more efficiently due to features such as parameter sharing and sparsity of 
connections.  The shortcuts mitigate the vanishing gradient problem and allows for a deeper neural 
network, which enables more patterns to be learnt and hence improves the model’s performance. 

 
Figure 3: Damage Classification Model based on ResNet50. 

 

5 Experiments / Results / Discussion 

Initially, we performed a human error analysis for the damage classification task by having each                             
member of the team manually classify 100 images as “damaged” or “not-damaged”. We found that the                               
group had an accuracy of 71% on average.   

Subsequently, we built a baseline model for our damage classification problem. We used a                           
neural network with two hidden layers, consisting of 50 units each and a ReLu activation function.                               
We had initially wanted to classify the buildings into four labels and hence the final layer had four                                   
output nodes (no-damage, minor-damage, major-damage, destroyed). We split the training set into                       
mini-batches of size 1,000 and chose to train a random 20,000 training images, with 5,000 testing                               
images from the same distribution. Our model achieved a training set accuracy of 74.7% and a test                                 
accuracy of 72%. However, we used the unaltered version of the dataset, which was skewed toward                               
no-damage (72%) and hence a model that always predicted no-damage would have performed                         
similarly.  
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Following this, we switched to a ResNet50 model with 20,000 training images and 5,000                           

testing images. Furthermore, we improved our image pre-processing method in order to crop buildings                           
of any size. We originally took 64x64 pixel crops of buildings by expanding out from their center, but                                   
this was not large enough for some buildings and caused 10% of our inputs to be incorrectly cropped.                                   
We adjusted to crop buildings of any size and would resize the larger images down to 64x64 pixels. On                                     
20 epochs, this led to an accuracy of 84.6% on the training data and 53.9% on the testing data. On 50                                         
epochs, the accuracy on the training data was 98.6% and the accuracy on the testing data was 77.9%,                                   
showing an improvement but indicating the model may have overfit. 

To address the high variance, we added L2 regularization, trying both the activity regularizer                           
and weights regularizer separately. The activity regularizer applies a penalty on the layer’s output. With                             
a hyper-parameter value of 0.01, training the model yielded an accuracy of 49.2% on the training set                                 
and an accuracy of 49.1% on the testing set. We then reduced the number of training images to 5,000,                                     
the number of testing images to 1,000, and the number of epochs to 20 in order to increase the                                     
iteration speed. We switched to a weights regularizer, applying a penalty on the weights trained, and                               
tested different values for the regularization parameter (0.0001, 0.0003, 0.001, 0.01). The results                         
indicate that a value of 0.0003 was optimum as anything less would not sufficiently reduce variance,                               
but anything more significantly increased bias. With a value of 0.0003, the model achieved an accuracy                               
of 72.1% on the training set, and an accuracy of 68.2% on the testing set. When using a larger data set                                         
(20,000 images for training and 5,000 images for testing), the accuracy on the training data was 87.5%                                 
and the accuracy on the testing data was 60%. Our best model’s performance (68.2% accuracy on test                                 
set) is comparable to human performance (71% accuracy).  

We also built a Mask R-CNN model to detect buildings from images. The resulting model,                             
however, had very poor accuracy on the test set. We believe this is due to the fact that because of the                                         
large size of the training images, we were only able to train the model with 50 images and 18 epochs,                                       
which took longer than 10 hours on AWS with 8 GPUs. Even though the performance of our model                                   
was suboptimal, we believe that with adequate training, the model will achieve high accuracy rates.  

6 Conclusion / Future Work 

To conclude, although our results were inconclusive, the method remains promising. Despite                       
the final model with an L2 regularization parameter of 0.0003 having accuracies short of the ResNet50                               
model without regularization, it may be a matter of finding the right parameter value. Moreover, upon                               
closer inspection, we notice that with regularization, the model had a promising recall value of 79% on                                 
the test set, which may be the evaluation metric we want to focus on moving forward as it is arguably                                       
more important for buildings that are damaged to be identified correctly.  

Error analysis was also performed in an attempt to find systematic errors and determine if any                               
further image pre-processing can help. Roughly 20% of errors were made when the image contained a                               
building heavily surrounded by trees. Another 16% of images may have contained buildings too                           
pixelated or unclear that humans would also have trouble properly classifying the image. And another                             
15% contained multiple buildings within the cropped image. Based on this analysis, we could look into                               
adding more images of buildings surrounded by trees to the training set. We could also work towards                                 
better image cropping techniques to mitigate the number of buildings per image.  

As for building detection, we can look into other studies that have built models for the                               
detection of buildings from satellite imagery. Perhaps, using the training weights for models                         
specifically designed for building detection instead of those for general object detection will improve                           
the accuracy of our model. Finally, other promising approaches include training on a bigger dataset                             
and training the models longer.  
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7 Contributions 

Each team member played an important role in this project. The following are some of the                               
tasks handled by each of the team members 

● Melvin: Preprocessing the images, writing the code for assessing human error, writing and                         
improving the two models, debugging, and writing the reports. 

● Cade: Preprocessing the images, human error assessment, error analysis, writing the reports,                       
and creating the final video. 

● T: Preprocessing the images, improving the models, error analysis, setting up and running all                           
models on AWS, and writing the report. 

● Abuzar: Preprocessing image annotations, writing the two models, error analysis, debugging,                     
and contributing to the reports. 

 

8 Code 

The following is a link to our github repository: ​https://github.com/CX3XC/CS230 
The building classification model can be found under Model_ResNet_final.py, with the ResNet50                       
infrastructure in Model_ResNet_helper.py. The building detection model can be found under Model                       
pre_processing_mask_rcnn.ipynb 
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