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Abstract

Diffusion Tensor Imaging (DTI) is a valuable diagnostic imaging technique often
used to study the human brain. Young children are often unable to remain still
for long periods of time as necessary for DTI imaging procedures. We propose a
super resolution model capable of transforming a low-resolution (LR) DTI image
to a 6-minute high-resolution (HR) image. We obtained DTI brain images of 9
patients from the Oncology and Brain Sciences labs of Stanford Professors Haruka
Itakura and Tamar Green. We introduced gaussian noise and downsampled these
DTI images to train our Convolutional Neural Network (CNN) model. We chose
the ResNet architecture with a General Adversarial Network trained to differentiate
between super-resolved images and the original HR images. This architecture
demonstrated strong performance, measured by perceptual difference in three
public benchmark datasets. We trained our model with slices from 7 patients
and tested its performance, measured by peak-signal-to-noise and the Structural
Similarity Index Measure, against the Bicubic standard in slices from 2 patients.
The SR-GAN underperformed the Bicubic model on quantitative metrics, but
recreated images perceptually similar to the original HR image. Further research
evaluating alternative structures over larger datasets of DTI images should be
performed to determine the optimal super resolution model.

1 Introduction

Diffusion Tensor Imaging is a magnetic resonance imaging technique that measures the diffusion of
water in tissue to produce neural tract images. DTI makes it possible to estimate the location and
orientation of white matter tracts and is commonly used to study the human brain. We researched
Super Resolution (SR) models to improve the quality of 3-minute Low Resolution (LR) DTI images.
A successful model would allow patients to be screened more quickly during imaging tests. The
required long patient standstill time is an acute concern in pediatric diagnostics.

The input data for our model is a low resolution grayscale DTI image of a human brain. The goal
of our super resolution model is to increase the quality and detail of the 3-minute LR images to
match that of 6-minute high-resolution (HR) images. In the typical SR framework, the LR image Y is
modeled as a downgrade function of X, the HR image and the blurry kernel k and noise term n.

y=(ra@k)l,+n,

Neural networks have empirically been successful in high-dimensional image classification problems
[1]. We explore various neural network architectures in order to transform the LR DTI image into a
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corresponding HR image. The model is trained on a set of (LR, HR) pairs and seeks to minimize the
loss function (defined in section 4) between the HR image and the true picture.

2 Related Work

Researchers historically used computationally cheap techniques like regression and interpolation to
map LR images to HR images [2]. Interpolation uses known data to estimate values at unknown
pixels through techniques such as nearest neighbor or bilinear. Today, mainstream SR algorithms
are of three categories: interpolation, reconstruction, and learning. Interpolation methods such as
bicubic are computationally cheap but use only local information in the LR image to compute pixel
values of the HR image, leading to large bias. Reconstruction methods do not scale well and are
computationally expensive. Learning-based models rely on training data and range from Markov
random fields to random forest and other methods.

Recent experiments by Dong et al and Wang et al have supported the use of convolutional neural
networks (CNN) in single image SR [3, 4]. Dong et al trained the CNN on the same dataset as
the traditional regression-based experiments (91 images consisting of 24,800 sub-images) [2] and
demonstrated superior results, measured by MSE. The CNN first pre-processes LR images by using
bicubic interpolation to increase the number of pixels in the LR image to match the desired size of
the HR image. Then, the CNN splits the image into various ‘image patches’, or small overlapping
subsets of the larger picture, and stores each patch in a high-dimensional vector. These vectors
containing representations of overlapping pixels are the features of the CNN.
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Source: Image Super-Resolution Using Deep Convolutional Networks [3]

The first convolutional layer extracts a set of feature maps for each patch. Each additional
hidden layer of the neural network maps a high-dimensional vector onto another high-dimensional
vector through non-linear activation functions such as ReLu. The final layer of the network aggregates
the patch vectors and reconstructs the high-resolution image.

CNN s share parameters and have few connections, reducing the parameters required to be trained;
imaging data is usually high dimensional, so weight matrices in each network layer have a high
number of parameters to train. Increasing the layers (depth) of a CNN improves its performance
because early network layers detect edges while later layers detect entire objects. Experiments by
Krizhevsky et al have demonstrated the efficacy of deep CNNs in image classification competitions,
with regularization techniques such as dropout reducing overfitting and test error [5].

Though conventional techniques like batch-normalization can speed the training process, deep neural
networks with many layers experience the ‘vanishing gradient’” problem, since the gradients of early
network layers are the product of many partial derivatives of activation functions by the chain rule. He
et al propose a Residual block architecture with skipped connections performing identity mappings,
increasing the value of partial derivatives [6]. The architecture supports up to 152 network layers
and achieves lower error than traditional CNNs on the ImageNet test set, used in image classification
competitions. Given the strong performance of CNNs in image classification and the advantages of
deeper networks, we chose to implement the ResNet architecture.



Most experiments use MSE, defined below, as the loss function and use stochastic gradient descent
with standard backpropagation to train network weights [3].
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However, MSE is based on pixel-wise image differences, and may not capture all perceptual dif-
ferences. Many experiments struggled with high upscaling factors and had poor texture detail in
reconstructed images [7, 8]. Therefore we used a generative adversarial network (GAN) and also
examined the SSIM metric. The GAN is trained to differentiate between the super-resolved images
and the original high-resolution images. The generator reproduces artificial LR images, and the
network layers are applied to an upsampled version of the LR image.

Since the discriminator must classify between real and fake images, the model can generate solutions
more similar to real images. Ledig et al show a significant increase in perceptual quality using
SRGAN with Mean-Opinion Score tests from three public benchmark datasets. We chose SRGAN
because its test scores are closer to the HR images than those of any other method [9].

3 Dataset and Features

We obtained the dataset from the Oncology and Brain Sciences Lab at Stanford and worked with the
Laboratory of Quantitative Imaging and Artificial Intelligence at Stanford University [10]. To access
patient medical images, we completed CITI Training required by Stanford School of Medicine and
received IRB Approval to conduct our research.

We received 6 minute HR images for 9 patients, with 1925-1960 image slices per patient (1 patient
had 868 slices). The images are grayscale pictures of the human brain. Each image slice has
dimensions of 256 x 256, is 130 KB (total dataset is 4.5 GB) and represents a different layer of the
brain; the input image z axis represents the number of slices, rather than RGB values. We did not
receive 3 minute DTI images representing the LR element of the aforementioned (LR, HR) pair so
we ‘reverse-labeled’ our data to train our model.

DTI Slice: Single Data Sample

Source: Laboratory of Quantitative Imaging and Artificial Intelligence at Stanford University[10]

To create LR images paired with the original, we first convert the DICOM, or Digital Imag-
ing and Communications in Medicine images to Numpy arrays. DICOM is the standard for storing
and transmitting medical images of any kind. We represent HR images as numpy arrays with shape
[256, 256, 3] by normalizing / rescaling and creating three channels from the grayscale image (for
each individual slice). Then we introduce gaussian noise and downsample by a factor of 4 to create
LR images. The numpy arrays for the newly created paired LR images and HR images are stored as
portable network graphics (PNG) files on our local computers. After preprocessing the data, we
loaded it onto AWS. Since images are de-identified, we use Amazon’s EB2 for storage.



We trained our final model with 7 patients, with 2 patients in the development / test set. We did
not create a separate dev and test set; our goal was to maximize the size of the training set, while
evaluating our model on multiple patients.

4 Methods

We use a 16 block ResNet architecture with a skip-connection and replace MSE-based loss with loss
from pre-trained VGG network with features extracted. We define a discriminator network which is
alternatively optimized along with the generator network. We train the generative model G to fool a
discriminator model D trained to distinguish between super-resolved images and real images. Our
goal is for the generator to create images that are perceptually indistinguishable from real images.
Per Goodfellow et al we optimize D and G in an alternating manner [11].
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We use the architecture proposed by Ledig et al [9], in which each block includes two convolutional
layers with 3x3 kernels and 64 feature maps followed by batch-normalization and ParametricRelu as
the activating function, as initially proposed by Gross and Wilber [12]. The discriminator trained to
solve the above equation. It has 8 convolutional layers with many filters, similar to the VGG network.
The feature maps are followed by a final sigmoid activation function to determine the probability that
the given image is real.

The GAN architecture is implemented in Tensorflow and Tensorlayer. We found an online GitHub
repository which implemented the SR-GAN model on natural images and used this as the baseline
for our DTT SR model[13]. We trained our model on AWS, given the workload is compute-intensive.
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Source: Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network [9]

Metrics

We will be looking at two metrics: 1. Peak Signal-to-Noise Ratio (PSNR) and 2. Structural Similarity
index (SSIM). These metrics are widely used in image reconstruction techniques in the medical field.
PSNR is the ratio between the maximum value of a signal and the MSE. It is used as a pixel-by-pixel
comparison which works well but is very local and does not take global visual differences into
account. SSIM looks at structure similarities between images. We use the below equation for PSNR:

PSNR = 20* log;, MAX
MSE/=



However, two distorted images with the same MSE may have very different levels of perceptual
similarity to the original picture. SSIM is based on the assumption the human visual system is able to
extract structural information. It compares local patterns of pixel intensities normalized for luminance
and contrast, since the structures of objects should be independent of both factors. We use the same
method as Wang et al and separate the similarity measurements into luminance contrast and structure
to create the below structural similarity index [7].
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S Experiments/Results/Discussion

We trained our SR-GAN model with slices from 7 patients with the following hyperparameters.
Training took about a day to reach 7 epochs. We slightly reduced the number of epochs because
the training time was very high. After training, we then tested the model on the 2 patients in our
test set, including 3,920 image slices. We compared our results against the well-known bicubic
super-resolution model. The results are the following:

PSNR SSIM
SR-GAN Model 33.838600 0.783874
Bicubic Benchmark 34.811728  (.889286

Select SR-GAN Hyperparameters

Batch Size 8
Learning Rate 1E-04
MNumber of Epochs 7

Below is a sample of our results looking at a single DTT slice.

Original HR slice Synthesized LR slice Bicubic benchmark Generated Image
(label) (input) from SR-GAN Model

PSNR: 35.60127 PSNE: 3467988

SSIM: 0.901932 SSIM: 0.82892

As evidenced by the sample images and metrics data, our SR-GAN model comes very close to
approaching, but does not yet surpass the Bicubic model, based on the mean PSNR and SSIM. The
mean is calculated across all slices from the 2 patients in the test set. Interestingly however, our
SRGAN model surpasses the Bicubic model qualitatively in its apparent structure and definition.

We also trained our SR-GAN model using the DIV2K natural images and applied this model with
different weights to our DTI images. This model achieved a mean PSNR of 33.785 and SSIM of
0.889, better than our SR-GAN model trained with DTI images. This suggests we need to increase
the size of our training set or train for more epochs. We should also consider alternative metrics
beyond PSNR and SSIM because they do not reflect the complexity perceptual difference.

6 Conclusion/Future Work

Further research evaluating alternative structures over larger datasets of DTI images should be
performed to determine the optimal super resolution model. Also, data augmentation techniques such
as random crops, mirroring, or rotation could be explored to increase the samples in the training set.



7 Contributions

Yamen Mubarka - Primary person responsible for training model, including tuning hyperparameters
and deciding optimal performance metrics. Yamen extensively debugged code for multiple model
candidates on both AWS and his local machine. Yamen introduced Git as a collaboration method to
track group changes.

Christopher Moffit - Primary person responsible for pre-processing data, including transforming the
DICOM data into Numpy Arrays, and increasing the number of channels for the SR-GAN Model.
Chris modularized such steps in Jupyter notebooks, allowing code to be easily re-used. Chris also
assisted with training the model on his local machine.

Jayanth Kocherlakota - Primary person responsible for literature review, paper write-up, video, and
dividing team responsibilities. Jay considered alternative model architectures in prior research. Jay
also assisted with setting up AWS infrastructure and helped Chris with pre-processing data.
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