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Abstract

Al-generated fake images, also known as DeepFakes, are designed to spread
abusive content and misinformation amongst millions of people, exacerbated by
their inherently controversial nature and the reach of modern media. In this paper,
we focus on detecting DeepFake images and propose a binary classifier based on
a 2-phase learning architecture. The first phase consists of a ResNet-based CNN
trained as a Siamese Neural Network, designed to find distinguishing features for
fake images. The second phase is a 2-layer CNN that takes the feature encodings
from the first phase and outputs a REAL/FAKE classification. We build on top of
prior work exploring this architecture and demonstrate 91% validation accuracy on
a large, diverse dataset of sophisticated GAN-generated DeepFake images.

1 Introduction

DeepFakes are manipulated pieces of media generated to spread misinformation, hoaxes, or otherwise
abusive content. With the reach of modern social media platforms, DeepFakes’ inherently viral
nature gives them the potential to negatively influence the opinions of millions of people, making
their detection a very serious problem. Due to recent advancements in architectures like Generative
Adversarial Networks (GANSs) [[1]], DeepFake generation has become much simpler, only requiring
a source image and set of intended distortions, to generate believable manipulated images. These
GAN-generated DeepFakes, however, leave noticeable visual artifacts that can be analyzed using
Convolutional Neural Networks (CNNs). In this paper, we explore a 2-phase learning architecture
using Siamese Neural Networks [2] with CNNs for DeepFake detection. This paper constrains the
problem to binary image classification, with an image as the model input and a prediction of whether
the image is real or fake as the output.

2 Related work

DeepFake detection by hand is an extremely difficult task, so analytical approaches have always been
far more practical. The earliest generation of work focused on non-deep learning approaches for
detecting manipulated images before the rise of GANS, and included analyzing low-level features in
images such as JPEG compression artifacts and chromatic aberrations [3]]. Other approaches have
included featurizing image data using bag-of-words and feeding those features to statistical classifiers
like SVMs [4] and examining image features in the frequency domain by training classifiers on the
Discrete Fourier Transforms of the images [S)]. These approaches are typically too susceptible to
differences in low-level image features such as lens-type and camera settings as well as specific
compression formats [6].

The next generation of approaches used CNNs, as with the MesoNet by Afchar et al. [7], which uses
dilated convolutions [8] to encode multi-scale information (due to multiple differently-sized convolu-
tions occurring at the same layer) and learn richer contextual information. Yet other CNN’s focus on
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face-warping artifacts left by common DeepFake-generating GANSs [9] and usage of high-pass filters
for detecting statistical artifacts left by GANs [[10]. Classical CNN-based approaches demonstrate
significantly better accuracy with more sophisticated DeepFakes, yet the lack of standardization in
the datasets used by each technique makes it difficult to compare their accuracies and ascertain a
state-of-the-art [11]]. Standardized data such as the DFDC dataset [12] and the FaceForensics++ [[13]]
benchmark should improve this.

Lastly, the approach we build upon is the 2-phase learning architecture proposed by Hsu ez al. [14],
which recognizes the need for comparing images across classes to learn features that distinguish
DeepFakes from real images. We describe this method further in Section 4.

3 Dataset and Features

The dataset used for training is derived from the DeepFake Detection Challenge (DFDC) dataset
on Kaggle [[12]. The original DFDC dataset contains over 470GB of mp4 videos, and based on an
analysis done on a 20GB sample of the dataset, approximately 83% of the examples are deepfakes.
The reason for this imbalance is that each real example has been deepfaked anywhere from 1 to 22
times, with an average of 5.19 fakes per real image, giving us a great diversity of different deepfake-
generation techniques that we must detect. Each video has a frame rate of 30fps and was exactly 10
seconds long. The videos contain people of a variety of races and ages, and the backgrounds vary
from bright indoors to dark outdoors.

Having constrained the problem to image classification, we sought to create a large dataset of
uniformly-sized images, each with a REAL/FAKE label and roughly a 80-20 split between real
images and deepfakes. More insight into this intentional imbalance can be found in Section 4.
We sampled 5 frames from each video (at a frequency of 2 seconds or every 60 frames) from a
100GB slice of the original video dataset. Each image frame was resized to (224x224) pixels,
normalized using the standard division by 255, and mirrored or transformed (in brightness, contrast,
and saturation) at random. Further, we included 3-4 deepfakes corresponding to each real image in
the dataset. These transformed raw images were fed into our ResNet-based model. An pre-processing
step of performing face detection and cropping was attempted, but ultimately not incorporated into
the final model. We finally used a training set of approximately 100K images with a validation set of
around 5K images. Example data can be found in Figure d]in Appendix A.

4 Methods

In this section we explain the 2-phase learning approach for DeepFake detection, first proposed by
Hsu et al [14]). Phase 1 of training involves a ResNet18-based CNN model that is trained as a Siamese
Network. This network, called the Common Fake Feature Network (CFFN), is trained with triplet
loss for the first several epochs to learn feature-level distinctions between fake and real images.
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The triplet loss, as seen in Equationﬂ] above, involves 3 input examples: Anchor (A), Positive (P),
and Negative (N). We choose all possible triplets per batch where the anchor and positive examples
are from the same class, and the negative image from the other class. (Examples are chosen per batch
in order to avoid precomputing (g) triples where n ~ 100K.) The triplet loss is minimized when
the difference between the positive and anchor encodings ||f(A) — f(P)||3 is minimized and the
difference between negative and anchor encodings ||f(A) — f(IV)||3 is maximized. Thus training
the CFFN with gradient descent drives the model weights to produce vastly differing encodings for
real and fake images, and the large number of convolutional filters will learn feature-level differences
between the two classes.

In Phase 2 of training, we have a small CNN (the Classifier Network) appended to the end of the
CFEFN, that takes the concatenated encodings from the final convolutional layers of the CFFN and
passes it through more convolutional and linear layers to output a binary class prediction. The
entire network (CFFN and Classifier network) is trained with cross-entropy loss in Phase 2 to create
a high-performance end-to-end classifier. Figure [I] provides a visualization of the entire network
architecture including the specifics for the CFFN and Classifier networks.



Intuitively, training the CFFN as a Siamese Network for the first several epochs gives us a deep
network of robust feature detectors for properties that commonly distinguish DeepFakes such as
occlusions and pixelation near the face, mismatched color gradients, and abnormal shadowing. The
structure also suits our dataset, which contains far more fake examples than real, allowing us to create
multiple triples with different fakes for each real image. The classifier network then fine-tunes the
earlier CFFN layers and trains the last two layers for several epochs. This model was implemented
with TensorFlow [[15]].

5 Experiments/Results/Discussion

5.1 Hyperparameter/Architecture Choices

The final model uses the 2-phase training architecture described in Section 4. Preprocessed images
(with the transformations described in Section 3) are resized to 224x224x3 and then passed into the
CFFN network. The CFFN uses two separate Dense Residual Blocks with filter sizes of 3 and 5. As
seen in Figure@ each Dense Residual block consists of 15 separate residual units, with 64, 96, 128,
and 256 channels. Each residual unit in the dense block is a standard residual unit [[16]] with 2 sets
of BatchNorm->Swish->Conv and a skip connection. (See Equationfor the swish activation [[17]]
formula). The output volumes of each dense block are concatenated, as inspired by the DenseNet
architecture [[18], and then reshaped before being passed to the Softmax layer. The encodings returned
by Softmax are used for the triplet loss computation in the Phase-1 Siamese training.

In Phase-2, input images follow the same processing steps until the dense block outputs are concate-
nated, after which they are passed through the classifier network consisting of BatchNorm, Conv, and
Linear layers to output a binary prediction. The architecture differs from the original CFFN model by
adding 12 additional residual units: 6 more residual units in each of the 2 dense blocks (see Figure [2).
These added residual units have 256 channels each, greatly increasing the number of parameters and
allowing the CFEN to better learn distinguishing features between real and fake images. The skip
connections in the residual blocks helps prevent these additional layers from overfitting.
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Phase-1 Training (CFFN as a Siamese Network) lasted the first 5 epochs, while Phase-2 (whole
network with cross-entropy loss) lasted the next 15 epochs. Both phases used the Adam Optimizer
and a learning rate scheduling policy that started at 1e~* and divided by 10 until 1e~° based on
certain thresholds such as completing 16 epochs of training and reaching a validation accuracy of
89%. Additionally, a batch size of 128, regularization A of 0.001 for the cross-entropy loss function,
and a margin « of 0.8 for the triplet loss function were further hyperparameters that were determined
to produce the best performing model. Early stopping was used to prevent overfitting with a validation
threshold of 94%.

f(x) = - sigmoid(z) =z (2)

5.2 Architecture Tuning Process

This section describes how we arrived at the chosen model architecture and hyperparameters. In
the first implementation, we saw a training accuracy of ~0.8 and a validation accuracy of ~0.6 on
a 10GB slice of the dataset (with around 10K images). The low training accuracy suggested our
model underfit the dataset. To improve training accuracy, we experimented with several architectural
changes including increasing the number of channels in the residual units, using longer residual units
(such as 3-4 sets of BatchNorm->Swish->Conv instead of 2), using more residual units in each dense
block (See Section 5.1 and Figure ] for details), stacking multiple parallel convolutions per residual
unit with 7x7 or 9x9 filters as with Inception Net [19]], and using the activations from all previous
units in each layer similar to DenseNet. Through experimentation, we determined that adding 6 more
residual blocks with 256 channels to each Dense Residual Block performed best, with the nearly 24
additional convolutional filters greatly increasing the model’s expressiveness.

Secondly, we tried training the model for more epochs, which is determined by the number of training
epochs for each phase. Whereas the Phase-1 Siamese network was previously only trained for one
epoch, we observed significant decreases in triplet loss only around 5 epochs. The length of Phase-2
training was empirically chosen to be 15 epochs.



CFFN Network

CFFN Output

Dense
Residual

RESHAPE
to 128-dim

and
SOFTMAX

CONV
e filter = 7x7
stride = 3

INPUT IMG
64x64x3

BATCI:NORM o,

filter = 3x3
stride = 1

RESHAPE
to 2-dim

Residual
Block
3x3 Conv
Filters.

ACTIVATION
[EEY

Classifier Output
2x1

Classifier Network

Figure 1: End-to-end model architecture. Note the labels demarcating the CFFN Network, the
Classifier network, and their respective outputs.
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Figure 2: A more detailed look at the Dense Residual Block units referenced in Figure

The above optimizations pushed training accuracy to nearly 0.87, but revealed another issue. After
several epochs of decreasing cross-entropy loss, it began oscillating between 2 values endlessly and
failed to improve classification accuracy. To address this, we implemented learning rate scheduling,
and arrived at the policy described in Section 5.1. Finally, various batch sizes from 32 to 256 were
tried, and an optimal of 128 was found. These optimizations led to a training accuracy of 0.91 and a
validation accuracy of 0.74.

The gap between training and validation accuracies indicated overfitting. We first added regularization
to the cross-entropy loss, which closed the gap significantly. We then increased the training data size,
first to 20K, then 50K, and finally 100K images. Eventually, these yielded a training accuracy of 0.94
and validation accuracy of 0.91. For the larger training datasets, we observed the validation accuracy
sometimes decreasing or oscillating in the latter epochs and implemented early stopping to prevent
further overfitting. Additional approaches were attempted to solve the overfitting problem including
dropout and varying the placement of BatchNorm layers, however these did not yield better accuracy.

My other experiments have included tweaking the activation functions (swish vs. relu), tuning the
regularization constant, increasing the total number of training epochs, tuning the margin constant
« in the triplet loss, changing the size of convolutional filters and stride/padding in the CFFN, and
preprocessing the training data using face detection and cropping. Many of these yielded varied
results and were incorporated into the final model accordingly.

5.3 Analysis

The model had a final training accuracy of 94% and a validation accuracy of 91%. It is difficult to
compare this model holistically with existing work, as the original CFFN proposed in Hsu et al. used
a vastly different self-generated dataset, although our work shows improved precision and recall.
Charts depicting the loss curve during training as well as the training and validation accuracies can
be seen in Figure 3] While these were the two primary metrics, we have also computed the precision,
recall, and F1 score in the Table [T}
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Figure 3: Training Metrics. y-axis for curves is number of iterations

The most informative chart about the specifics of the model’s performance can be found in the
confusion matrix in Figure E[d). The validation set had 4902 examples, 3922 fakes and 980 reals,
which is the intended 80-20 split in the validation data that matches the training data distribution. Of
these, the model correctly identifies the vast majority of fake examples. The false positive rate being
greater than the false negative rate and the larger number of predicted fakes suggests the model is
much more likely to err on the side of labelling examples fake. This is the intended behavior since
the cost of a false negative (fake image marked as real) is higher than that of a false positive (real
image marked as fake), as the former could allow the spread of misinformation and abusive content,
whereas the latter would merely inconvenience the end user before eventually being flagged and
corrected manually in some real-world setting. Ideally, we would drive the false negative rate even
closer to 0. A scan through the false negatives suggests that the model is susceptible to low-quality
images, dark backgrounds, and natural occlusions in the facial area due to shadows, and perhaps a
more complex model and increased preprocessing could be useful.

Validation Accuracy Training Accuracy Precision  Recall F1 Score
0.9141 0.9375 0.937516  0.956400 0.946864

Table 1: Key Performance metrics for a binary classification model.

6 Conclusion/Future Work

We built a high-performance DeepFake classifier using 2-phase learning and a ResNet-based model
with large dense residual blocks. The CFFN was trained as a Siamese Network with an aggressive
triplet loss margin, whereas the entire network was fine-tuned in latter epochs with regularized
cross-entropy loss to preserve generality in a large, diverse dataset of 100K images. Optimizations
such as learning-rate scheduling, early stopping, and batch size tuning improved accuracy.

Given more time, expanding on this work to multi-modal DeepFakes would be interesting. The
existing model could be used within the context of an RNN for learning cross-frame relationships.
Similar RNN-based approaches could be used to detect audio tampering, and the results of these two
models could be synthesized for a complete end-to-end DeepFake video detection model.



7 Contributions/Code

This was a solo project. The code for the project can be found in the following repository:
https://github.com/osalpekar/DeepFake-Detection
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Appendix

A. Sample Data
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Figure 4: Some Real Images (right) and their corresponding DeepFakes (left) that can be found in the
DFDC dataset. These images were presented in the DFDC overview paper [[12]]. We refrain from
using other non-public images in the paper due to the DFDC competition terms and conditions.
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