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Abstract 
 

Human kind has continuously attempted to both understand and model the brain.  These domains, 
Neuroscience and Artificial Intelligence, have in recent times, with the advent of Deep Learning, come 
together as elements of their respective insights begin to cross-pollinate.  One area where this 
cross-pollination has not yet fully taken hold is the use of predictive neural networks to derive suspected 
relationships between different regions of the brain in forming semantic representations of visual stimuli. 
This study sought to leverage Shapley Value to interpret high-dimensionality models trained to predict 
what stimulus was shown to a human given a dense input of 5033 electrode readings.  Ultimately, an 
ensemble of ten binary classification models revealed unique combinations of activity across signals 
detected in the Amygdala, Hippocampus, Parahippocampus, and Entorhinal Cortex.  While these results 
are not in and of themselves affirmative discoveries of novel patterns in the semantic encoding processes 
of the brain, they do pave the way for new work in using interpretability of neural networks to decode brain 
signals.  
 

Introduction 
 

Historical studies evaluating single neuron electrode and scalpel EEG data have sought to demonstrate 
brain activity in the amygdala, hippocampus, parahippocampus, and entorhinal cortex  in response to 
various stimuli, ranging from shapes and colors to happy and sad faces to natural and unnatural objects. 
Most of these activities have been undertaken with one of two objects:  either increase human kinds' 
understanding of brain function or use that improved understanding to advance our ability to interact with 
technology through so-called “Brain Machine Interfaces” (BMIs).  
 

Studies in this domain have traditionally been set up to measure activity in a suspect region of the brain in 
response to certain stimuli.  For example, a human is shown an image of a sad face and output 
recordings from either scalpel EEG or single neuron electrodes are used to measure signal in the 
suspected regions.  These signals can then be used in reverse to build and assess statistically learned 
models out-of-sample predictive ability.  
 

To date, much of this work has been done with less sophisticated modeling techniques, such as Support 
Vector Machines, being applied to singular areas of brain activity (e.g., Amygdala vs. Hippocampus).  By 
continuing on the work of Mormann et al.​1​ and applying high-dimensional, multi-layer neural networks, we 
aimed to evaluate the predictive power of single neuron studies when evaluating all brain regions 
simultaneously.  We then hoped to apply the work of Lundeberg et al.​2 ​ to a new field, extracting Shapley 
Values across a wide range of electrodes inputs and using them to assess how different regions of the 
brain may “work together” in assessing a variety of different semantic classes.  
 

Literature Review 
 

The work relevant to this project sits at the intersection of four key areas of research -- Neuroscience, 
Brain Machine Interfaces, Deep Learning, and Model Agnostic Machine Learning Interpretability.  
 

The state of the art in Neuroscience holds that semantic representations of visual stimuli, such as those 
presented in this study, are held as abstract representations in the brain.​3​ ​Some progress has been made 
in the mapping of neurological representation of semantic concepts into categories such as 
living–nonliving or abstract–concrete.​4​ Investigating semantic representations, in more detail in areas 



known to be activated in these events-- e.g., amygdala-- has been notoriously difficult.  Mormann et al. 
collected a unique dataset that allowed four distinct regions of the brain -- amygdala, hippocampus, 
parahippocampus, and entorhinal cortex -- to be evaluated in their response relative to a group of 100 
visual stimuli grouped in 10 semantic categories.  Within each brain region, the study found varying 
predictive ability through the use of SVMs with 70-95% accuracy at the semantic class level (e.g., Bird) 
depending on the portion of the brain evaluated.  Because each region of the brain was evaluated 
independently, it was difficult to infer relationships between areas of the brain from these models.​1  
 

In parallel to these developments in Neuroscience, Deep Learning has become a subject of great 
attention to the public eye due to the high level of generalization of it’s models.​5​  One noted criticism of 
this generalization, however, is that it comes at the inherent trade off of interpretability--that is, 
explanation of why a prediction is made relative to a set of input features -- when compared deterministic 
or lower dimensionality statistical models.​6​  In an effort to advance the state of the art of interpretability, 
Shapley Values, popularized by Lunderber et al. and the related SHAP (SHapley Additive exPlantions) 
have emerged as a relatively resilient method for determining each feature of a machine learned model’s 
contribution to a predicted value in terms of both direction and magnitude.​2  
 

Prior to this study, we are not aware of work that sought to relate state of the art Deep Learning and 
related Model Agnostic Interpretability methods to this field of neuroscience.  It would seem that by using 
the entire feature space of electrodes to predict visual stimuli and then grouping Shapley Values by region 
of the brain, new insights to the field of Neuroscience could be extracted.  
 

Dataset and Features 
 

Our work continued on the results of Mormann et al. in “Representation of abstract semantic knowledge in 
populations of human single neurons in the medial temporal lobe”.​1​  We obtained a data set of 1000 
observations (m=1000) across 100 unique stimuli (birds, computers, etc.) for 25 patients and 
corresponding single neuron readings from 5033 individual neurons (n=5033). 
 

Stimuli were grouped into 10 semantic categories of 10 examples each.  For clarity there were 10 unique 
birds, 10 unique items of clothing, 10 unique computers, etc.  This dataset allows for classification on 
three different levels of granularity natural vs. man-made (ie, 5 semantic categories each - flower/bird vs. 
computer/clothing), the semantic class level (ie, flower vs. bird vs. computer vs. clothing), and unique 
image (ie, a shoe and a skirt both in the semantic class clothing). 

 
 
Figure 1: Hierarchy of Single Neuron Data Set 
100 Images, 2 Parent Categories, 10 Semantic Categories, 10 Examples Each 

 

Single unit neuron readings were likewise grouped into the parent categories of amygdala, hippocampus, 
entorhinal cortex, and parahippocampal cortex.  Unfortunately raw sensor data was not available, so 



instead prediction on Z-scores comparing firing rates to a baseline, which the study obtained using 
Wave_Clus and Combinato, two common spike-detection algorithms that make use of convolutional 
masks to detect spikes in output readings. 

Semantic Class Mean Z-Value Min Z-Value Max Z-Value 

Wild Animals -0.0029 -3.5385 52.936 

Fruit 0.0123 -3.5354 53.157 

Flowers 0.0007 -3.3412 63.6854 

Insects 0.004 -3.6217 35.4503 

Birds -0.0043 -3.2924 39.108 

Manmade Food 0.0243 -3.5354 52.936 

Clothes 0.0166 -3.383 41.1326 

Furniture 0.0125 -3.2924 45.1599 

Instruments 0.0044 -2.9275 62.2511 

Computer 0.0075 -3.0495 52.936 
 

Figure 2: Descriptive Statistics of Single Neuron Dataset 
 

Methods 
 

In order to establish an early baseline with our Single Neuron data set, we elected to use a simple 
feed-forward neural net built with Keras/Tensorflow.  Early iterations indicated that variance/overfitting 
was a problem but our suspicion was also that the dimensionality of our feature space would require a 
network with high depth. We built a five layer multi-class feed-forward neural network ( X=5033x1000 ||| 
1024 relu, .6 dropout ||| 512 relu, .6 dropout ||| 256 relu, .6 dropout ||| 128 relu, .4 dropout ||| 100/10 
softmax ).  As indicated, we experiment with the output layer as 100 unique classes vs. 10 unique classes 
in line with the hierarchal design of the original experiment.  Due to our small sample size, we used only 
10% of the sample as a holdout test set.   We also elected to use the Adam optimizer and a mini-batch 
size of 100 due to some compute constraints.  We implemented early stopping at 100 epochs for the 100 
class model and 65 epochs for the 10 class model.  
 

Given the high dimensionality of this task relative to the number of training examples, some of our primary 
concerns are overfitting and low accuracy.  As we found in our initial experiments, these issues can be 
overcome in a variety of ways via regularization techniques, dropout, and early stopping to minimize 
variance/overfitting and upsampling to the semantic category level to improve accuracy.  
 

Once positive results were obtained and optimized through a thorough search of the hyperparameter 
space, the same model architecture was broken into 10 individual binary classifiers with the only variation 
in the architecture being a change to the output unit.  This ensemble of sigmoid classifiers had better 
compatibility with Shapley Values and also exhibited higher predictive accuracy in most semantic classes.  
 



 
Figure 3: Final Five Layer Neural Network Architecture for Binary Classifier 
Binary semantic classifiers were trained on all 5033 features for each of 10 classes 
 

Lastly, we used the SHAP package Deep Explainer algorithm to evaluate these models.  DeepSHAP 
uses regression to approximate Shapley Values for Deep Learning models.  The approximation uses a 
distribution of background samples to estimate the relative contribution of each feature to the output of a 
model.  By plotting Shapley Values for each feature in each observation against those of the dataset as a 
whole, we are able to determine the relative contribution of that feature to a given prediction.  By summing 
these contributions across brain regions, then, we can determine the relative role our Neural Network 
suggests each region might contribute as follows. 
 

 
Figure 4: Example Shapley Values for 5033 Features and Corresponding Regional Distribution 
High contribution of Amygdala (AM) and Hippocampus (HC) vs. mild contribution of Entorhinal Cortex 
(EC) and negative contribution of Parahippocampus (PHC) for predictions in class “Insects” 
 

Experiments/Results/Discussion 
 

After running our 100 class model (each bird, each flower, etc.), it became clear that the single neuron 
reading data simply did not have enough training examples to obtain meaningful results with 
out-of-sample accuracy of only 22% compared to train fit accuracy of 90%.  We avoided this risk of high 
variance by simply upsampling the data using the same NN architecture across only 10 classes and saw 
significant improvement with out-of-sample accuracy of 95% and train fit accuracy of 98%.  
These were astounding results as they indicated the validity of a neural network based approach and, in 
fact, already represented an improvement on the original paper which focused on support vector 
machines and achieved accuracy of only 70-95%, depending on the brain region analyzed. 
 

The combination of our and prior results seem to indicate non-linear relationships between different 
segments of the brain.  As a result, we used Shapley Values for interpretability on 10 distinct binary 
classifiers and saw high accuracy with all classes above 91% accuracy and an average of 97% accuracy 
across the dataset.  



 
Figure 5: Comparison of SVM (Mormann et al.) vs. Multi-Class NN Predictive Accuracy 
Box plots show accuracy across 100 cross-validation samples for the SVM approach 
AM = amygdala, HC = hippocampus, EC = entorhinal cortex, & PHC = parahippocampal cortex 
 
 

 
Figure 6: Accuracy of Binary Classifiers for Each of Ten Semantic Classes After 100 Epochs 
 
 

Beyond this high level of accuracy, we were particularly pleased to see that Shapley Values did show 
distinction between the relative contributions of electrodes in each brain region to out-of-sample predictive 
accuracy.  For example, while the Amygdala was the leading contributor in most classes, the Wild 
Animals, Insects, and Instrument classes all saw high contributions from the Hippocampus.  Particularly 
compelling was the indication that the presence of stimuli in the Parahippocampus actually had a negative 
impact for classification of Insects.  
 
 

Conclusion and Future Work 
We believe the variety of methods and datasets explored and results achieved in this paper represent 
progress in the fields of both core Neuroscience as well as the application of Deep Learning to Brain 
Machine Interfaces (BMIs).  Evaluating a variety of different brain stimuli at multiple levels of specificity 
and applying interpretability methods to these results, we have demonstrated the pros/cons of different 
approaches and also pathed the path for a variety of feature avenues of work. 
 

With regards to Single Neuron Data, we showed that these datasets, while unrealistic for BMI, have 
incredibly high predictive accuracy, especially when all regions of the brian are examined in parallel.  This 
represents significant progress from prior studies, which looked only at single region activity.  
 

Last but not least, through the use of Shapley Values, we were able to indicate that different semantic 
classes are optimally represented by predictive Neural Networks that place different levels of feature 
attribution on the Amygdala vs. Hippocampus vs. Parahippocampus vs. Entorhinal Cortex.  
 

While this work cannot guarantee that these brain regions are, in fact, utilized differently in the encodings 
of these specific semantic representations, it does present the opportunity for future work to 
cross-validate this finding via other means.  While it remains true that Neural Networks are not, in fact, 
accurate representations of the human brain, we are optimistic that the combination of these types of 
models and the advances of interpretability of them will help to advance the fields of neuroscience and 
Brain Machine Interfacing for many years to come.  
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Appendix A - Summary of All Results 
 

 

 



Appendix B - EEG Research - Alternative Dataset 
Due to the interdisciplinary nature of our research, we evaluated two different datasets in attempting to 
determine the applicability of Deep Learning and Shapley Values to neuroscience research.  We 
ultimately found Single Neuron Readings to outperform the EEG data.​1  
 

EEG readings of brain waves from the MindBigData Dataset 
Initial research into EEG readings was done using a publicly available dataset, MindBigData, of brain 
wave readings collected using the Emotive EPOC device.   This dataset evaluated responses from a 1

single human subject being exposed to digits from 0-9 and, as a control, no digit at all. This data offered 
limited variety in individuals observed and was limited to only numeric characters.  It’s advantages 
however came in that it offered 65034 unique observations (m=65034) and provided access to raw time 
series data over two seconds recorded at 128Hz (Tx=320).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:​ ​Distribution of Labels and Data Statistics by Channel for MindBig Dataset 
As the above table shows, the readings across the 14 channels for the EEG data set were very consistent in terms of the min and 
max values, likely reflecting both the biology and limits of the device itself, as well as in terms of the mean signal value. However, 
there appears to be some difference in terms of standard deviation between channels.  
 
EEG readings of brain waves from the MindBigData Dataset 
Due to the time-series nature of EEG data, we initiated our research by experimenting with an LSTM 
neural network architecture, implemented using Tensorflow/Keras. We used 128 LSTM units, with an 
input shape of (320, 14), corresponding to the max number of readings per channel (320) and the number 
of channels (14).The second layer had 512 ReLU units, and the final layer was a Softmax with 11 units, 
corresponding to the 11 possible classes. We used the sparse categorical cross entropy as our loss 
function and the ADAM optimizer. We used a training/test split of 90/10 and trained the model for 100 
epochs. 
Unfortunately, our accuracy barely exceeded 10% for the test set, and so we did not focus on 
regularization/dropout at this stage. After failing to achieve satisfactory results even after trying multiple 
publicly available EEG datasets and experimenting with various RNN architectures we decided to focus 
our efforts on Interpretability of the Single Neuron Readings. We hope that future work in this area will 
achieve better results, possibly by moving away from using RNN in favor of CNN, as this kind of research 
holds substantial theoretical and practical importance to building Brain-Machine Interfaces. 

1 Vivancos, D. This MindBigData The "MNIST" of Brain Digits http://www.mindbigdata.com/opendb/ 


