
CS230 Project Report

Cloud Anomaly Detection

Dhruv Lakhani
dhruvsl@stanford.edu

Rishabh Kumar
rkumar92@stanford.edu

June 2020

1 Abstract

On services deployed on cloud, situations can arise which can cause the operating state to abruptly
go out of normalcy. Consider a situation where the number of graphic images uploaded to a plat-
form like Twitter spikes on a Christmas eve, or a popular keyword suddenly disappears from
Google search. These out-of-the-normal states are anomalies. There are other common situa-
tions also where such anomalies occur quite frequently: actions of malicious agents like bots and
spammers, after a new software release, etc. We tried to approach this problem with various ex-
isting techniques, and custom-built models. As part of this project, we identified models which
worked better than others but none of the techniques performed as good as the existing statis-
tical techniques, which lead us to investigate why. This report documents our experiments and
investigation.

2 Introduction

In this section we will talk about introduction to Cloud Anomaly Detection. As we discussed
earlier, early detection of anomalies is crucial for supporting use-cases for all stakeholders like
availability of user data, availability of the cloud service itself, detection of adversaries like bots
or spammers, some incident in data centers etc. This was one of major motivation for both of us
as we both work on cloud services which face these problem quite often. As part of this project
we developed deep learning models to see if we could possibly bring improvements over existing
statistical techniques for detecting anomalies in cloud services. We used Yahoo dataset to come up
with an anomaly detection model. We did some thorough statistical analysis for time-series data.
We applied existing Twitter [9] statistical algorithm to establish a baseline before applying a deep
learning based solution.

3 Related Work

Much of the existing deep learning work on time-series data is either related to forecasting or custom
fitted to the needs of the targeted problem (as described in [2]). Along with high precision, there
are other challenges with anomaly detection for cloud metrics: the data could be more granular
across the time dimension and different detections are required for different time scales (short
timescale for large noticeable abruptions, long timescale for more silent issues) . For this reason,
cloud systems have developed a lot of custom statistical techniques, e.g. [9]. Few papers such
as [6] and [10] present a forecasting solution which focuses on predicting uncertain events, a
technique which works very well for distributing driver workload based on the number of trips –
a dataset much less granular than cloud metrics. Twitter has adopted statistical approaches built
on ESD as described in [9] and an improvement based on recursive-ESD [7]. Other papers talk
about exploring anomalies in multidimensional space such as [8], but our focus is on industrial
application to detect anomalies in cloud service metrics.

4 Dataset and Related details

As mentioned before we used Yahoo dataset, which has synthetic and real time-series with labelled
anomalies. The dataset is divided into 5 benchmark folders and in total it contain 371 files.

1

https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70

Figure 1: Cumulative time-series analysis Figure 2: Confidence Interval using ARIMA

Each file has hourly time series data along with labelled anomalies for a quarter. One benchmark
contains real data (from an actual cloud service) while others have synthetic data. Real data
based benchmark consists of timestamp, value and anomaly boolean field while synthetic ones
have, in addition to the above mentioned fields, varying noise and trends with three prespecified
seasonalities. We also did cumulative time-series analysis on dataset w.r.t seasonality & trend
which can be seen from the following figure 1

4.1 Analysis

We ran more than 50 ARIMA models to see which one is the closest fit to the time-series which we
were analyzing. We analyzed all types of models which includes both additive and multiplicative
seasonal effect and closest model was found to be ARIMA(1, 1, 1)x(0, 0, 1, 12). This analysis also
helped in giving us a relevant confidence interval as can be seen from 2. We are planning to use
these intervals for comparison w.r.t. the one predicted by our method.

4.2 Preprocessing and Selection

As we didn’t have time-series for multiple years we decided to use all benchmark folder and split
the whole data into a 80:10:10 split. 80% for training, 10% for validation and the remaining 10%
for testing. We did time-series values normalization using Scikit’s MinMaxScaler.

5 Methods

We ran Twitter algorithm described in [9] on Yahoo dataset to see some preliminary results so
that we can use it later to compare our own algorithm’s performance as baseline model. We
also produced a vanilla LSTM, which performed decently on a small dataset. However, when we
attempted to run the method on a larger data-set it performed poorly: the model had high MAE
on a few sequences.

5.1 Deep Anomaly Detection using auto encoder

We structures overall approach for time-series based anomaly into following sub-tasks:

• Forecasting: We designed a deep prediction model for forecasting the next time-series
element.

• Confidence interval estimation: We followed a Bayesian approximation based technique
to estimate the confidence interval for the forecasting prediction.

2

5.1.1 Autoencoder Forecasting

With Vanilla LSTM model we deduced that the model had high bias and we attempted to fix it via
deeper network. We tried increasing the size of the time-series segments that were being trained,
increasing the number of network layers, and increasing the number of neurons in each layer. But
deeper models didn’t produce significantly better results. Upon investigation, we realized that in
the approach our model is trying to learn a many-to-one function (since the output is a single
next value). This approach does not work very well for time-series data, like the one we are trying
to model. The reason being that data from production metrics is often driven by factors which
cannot be deterministically modelled. Hence a single anomaly point which is a part of the time-
series can have large effects during the backwards propagation phase. It was evident that instead
a many-to-many model would be a more meaningful choice for efficient learning.

A many-to-many sequence forecasting model would be confusing for forecasting elements, and
there were other issues also related to incorporating other hand-engineered features present with
the dataset – like the seasonality data. So we built a multi-stage prediction pipeline with two stages:

1. First we ran an auto-encoder model as described on left side of 3. The auto-encoder model auto-
encoded a given segment into an embedding, which is used to forecast the next M elements of
the series. We train this auto-encoder model for a large number of epochs.

2. Once we have obtained the auto-encoder model, we used the embeddings produced by the
encoder in above as input to a forecasting model which predicts the next element. This model
is also provided with other features present in the data. We train the layers of the forecasting
model based on the input data. The model is described on the right side of 3.
The above 2-stage approach helps forecast the next element. To predict the next sequence

(next few elements), we follow an iterative approach, where the next element predicted serves as
input for the next prediction. We use this prediction method and evaluate loss with respect to the
original time-series for all series present in the validation/test sets.

5.1.2 Deep DNN and BiRNN Forecasting

We also tried TFLearn’s DNN and BiRNN libraries. For DNN we experimented with multiple
layers and most optimum hyper parameters were 5 layers with 100 neurons each, and was trained
for 600 steps with a batch normalization along with the Adam optimizer. For BiRNN We tried
ELU activations along with 100 neurons and 5 layers, but even after introducing temporal nature
we were not able to reduce lot of true negatives for both approaches.

5.1.3 Mixed RNN Forecasting

As seen from above auto encoder model above, results don’t look promising compared to statistical
results. We tried one another approach inspired from [5], where paper talks about predicting sales
data on instacart and we saw data similarity between customer sales and anomaly dataset, we
tried similar approach on our dataset to come up with better precision and Recall.

In this mixed RNN model, we define ρ(t) ∈ [0, 1] to be a function of the time interval between
two particular observations in our time series sequence. This value was like a weighted decay and
decreased as difference in time increases so that effect of previous time series value diminishes as we
proceed with RNN model. This model was basically controlled temporal inference based. ρ allowed
us to define a continuous RNN model which adapts to varying time spans between anomalies.

5.1.4 Confidence Interval Estimation

To estimate confidence interval we take inspiration from [4] and [3] and use bayesian approximation.
The total uncertainity of the forecasted value can be estimated by the following formula:

Var[y|x] = Var[E[y|M, x]] + E[Var[y|M, x]]

,
where y is the forecasted point, x is the input sequence and M is the trained model.
The parameters on the right hand side are evaluated with the following approach:

1. Var[E[y|M, x]] is the model uncertainty. To estimate this we add an MC dropout layer (as
presented in [4], [3], and [10]) after each layer of the forecasting model. The model uncertainty,

3

Figure 3: Left: Autoencoder for time-series. Right: Forecasting for time-series

Anomaly % Precision Recall
0.005 0.85 0.51
0.01 0.92 0.75
0.02 0.801 0.79
0.03 0.78 0.79

Table 1: Behavior of Precision and Recall
with Hybrid ESD algorithm

Model Precision Recall
Vanilla LSTM 0.40 0.31

Autoencoder based LSTM 0.46 0.36
TFLearn DNN 0.40 0.39

TFLearn BiRNN 0.40 0.40
Mixed RNN 0.35 0.52

Table 2: Deep Learning model results

σ is estimated as the variance of the forecasted values for a given time-series x:

σ(x) =
1

M

M∑
m=1

(M′(x)m −M′(x))2

, where x is an input time-series, M′(x)m is the forecasted value of the model with dropout
layers (M′) at the mth experiment, andM′(x) is the mean of all M experiments. We observed
that the choice of x determined the uncertainity, so to provide an improvement over this we
tried to average this over a validation set: x1, x2, ...xV :

uncertainty =
1

V

V∑
v=1

σ(xv)

,

2. E[Var[y|M, x]] is the noise of forecasted values w.r.t. to the actual values. This is estimated
on a validation set: x1, x2, ..., xV , and y1, y2, ..., yV as:

1

V

V∑
v=1

(M(xv)− yv)2

, where M(xv) is the forecasted value of the model actual model (without dropout layers).

6 Results

We ran the experiment on a few different models and calculated the precision and recall based
on confidence intervals derived from the above method. Table 1 & 2 documents the results along
with some statistical algorithms. On the right of 4, we plot MAE against the number of epochs
for different approaches.

We obtained confusion matrix for Twitter’s Seasonal Hybrid ESD algorithm and results are
included in 1. We saw high precision and Recall for statistical algorithm. As seen from results in 2,
we can see that autoencoder based LSTM approach performs better than the naive vanilla LSTM.
However, we still see that the performance of deep learning based algorithms is not better than
the statistical approaches. Upon more careful investigation we see that the deep learning based

4

Figure 4: Left: Predicted anomaly for 2 time-series: blue line indicates the actual time-series,
orange line is the forecasted time-series, red squares indicate actual anomalies, light blue region is
the confidence region, green circles are the predicted anomalies. Top-Left: A time-series for which
most of the anomalies were covered. Bottom-Left: A time-series for which none of the anomalies
were covered. Right: MAE against number of epochs for various approaches

anomaly detector performs very well on negatives (a data point is not an anomaly) but performs
poorly on positives (a data is an anomaly), as can be seen on the left of 4. The reason being
two-fold:
1. The number of non-anomaly data points is much greater than anomaly data points, and hence

they are likely to produce skewed results.

2. The model still produces relatively high MAE which indicates deviation of the model from the
actual results. This was verified by looking at a few time-series that produced very high MAE.
MAE increases the inherent noise of the model and increasing the confidence interval. Due to
this we observe a lot of anomaly data points to be classified as non-anomaly data-points.

DNN and BiRNN results didn’t provide advantages over auto encoders due to the limited set
of available features. However we observed decreased precision for Mixed RNN but our recall
increased by good amount and this indicates better detection of local anomalies via this approach.

7 Conclusion & Future Work

Here are important conclusion which we noted via dataset analysis and various techniques:

• Our statistical analysis showed that Yahoo data aligns pretty well with one of ARIMA multi-
plicative model. Our baseline model was based on statistical algorithm on Twitter’s real time
data and we observed that it performed really well on Yahoo data. Major reason for this was
good detection for both global and local anomalies and it was possible due to ESD algorithm
which decomposes various seasonal and trend component of time-series.

• Autoencoders provided a way for us to go deeper and provide better accuracy since we were able
to get feedback from more number of points but still was far behind in performance.

• Limited features attributed to poor performance of BiRNN and DNN approaches.

• We tried Mixed membership RNN model and it was motivated by the fact that as time proceeds
between observations, the next observation may be better modeled as independent from initial
distribution of time-series. This gave us better recall and it captured a lot of local anomalies
but it performed poorly on precision as it predicted few false local anomalies too due to increase
in local effect of time-series.

• We concluded that we need lot of data for e.g few years, if we want deep neural network techniques
to perform better than statistical one as 1 quarter of data is not enough to capture information
for hidden units. Additionally Cloud data aligns very well with ARIMA models but more data
will help in learning various hidden parameter which are not detected by ARIMA models.

8 Contributions

Both of us worked together collaboratively on almost all aspects.

5

References

[1] Benchmark dataset. https://research.yahoo.com/news/

announcing-benchmark-dataset-time-series-anomaly-detection.

[2] R. Chalapathy and S. Chawla. Deep learning for anomaly detection: A survey. CoRR,
abs/1901.03407, 2019.

[3] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning, 2015.

[4] Y. Gal and Z. Ghahramani. A theoretically grounded application of dropout in recurrent
neural networks, 2015.

[5] C. M. K. W. Ghazal Fazelnia, Mark Ibrahim and J. Paisley. Mixed membership recurrent
neural networks. 2018.

[6] N. Laptev, J. Yosinski, L. E. Li, and S. Smyl. Time-series extreme event forecasting with
neural networks at uber. 2017.

[7] A. P. M. Ryan and C. Mahoney. Real-time anomaly detection for advanced manufacturing:
Improving on twitter’s state of the art. 2019.

[8] R. J. H. Priyanga Dilini Talagala and K. Smith-Miles. Anomaly detection in high dimensional
data. 2019.

[9] O. Vallis, J. Hochenbaum, and A. Kejariwal. A novel technique for long-term anomaly detec-
tion in the cloud. In HotCloud, 2014.

[10] L. Zhu and N. Laptev. Deep and confident prediction for time series at uber. 2017 IEEE
International Conference on Data Mining Workshops (ICDMW), Nov 2017.

6

https://research.yahoo.com/news/announcing-benchmark-dataset-time-series-anomaly-detection
https://research.yahoo.com/news/announcing-benchmark-dataset-time-series-anomaly-detection

	Abstract
	Introduction
	Related Work
	Dataset and Related details
	Analysis
	Preprocessing and Selection

	Methods
	Deep Anomaly Detection using auto encoder
	Autoencoder Forecasting
	Deep DNN and BiRNN Forecasting
	Mixed RNN Forecasting
	Confidence Interval Estimation

	Results
	Conclusion & Future Work
	Contributions

