

Predicting Aviation Weather Conditions for

Flight Planning

By Nate Simon and James Wang
CS230, Spring 2020

Introduction
We are applying deep learning to historic weather data at airports in the US

to make informed short-term predictions (forecasts) of weather conditions. We

are using weather data in the form of a METAR (Meteorological Aerodrome

Report). These reports are published by over 900 ASOS (automated surface

observing system) sites in the US and historical reports are available.

Task
Our task is to train a model on past data for short-term weather prediction.

Specifically, if the weather is likely to transition from ‘VFR’ (visual

flight rules - i.e., good) to ‘IFR’ (instrument flight rules - i.e., bad)

within a specified prediction window.

Our labeling scheme is the following:

X -> Numericalized Metar Data for T consecutive historical reports.

Y -> (1) When the weather state transitions from VFR to IFR at any point in

the prediction window. (0) Otherwise.

The goal is to input a novel example X and receive an informed prediction of

the VFR->IFR transition (worsening weather) based on previous weather

patterns. This could be used in real-time at small airports without weather

prediction equipment for flight planning.

Related Work
Deep learning has been applied to weather forecasting, and METARs have been

used as a data vehicle for such efforts. The Argonne National Lab showed the 1

promise of deep learning in speeding up large-scale weather forecasting, as

an “accurate alternative to physics-based parameterizations.” A team at Tel

Aviv University applied dynamic convolutional layers to radar images for

short-range weather prediction, and another team at UT Arlington used METAR 2

data to construct an RNN for wind speed forecasting. These efforts used 3

1Wang et al. "Fast domain-aware neural network emulation of a planetary boundary
layer parameterization in a numerical weather forecast model."
2Klein et al. “A Dynamic Convolutional Layer for Short Range Weather Prediction.”
3Ghaderi, Amir, Borhan M. Sanandaji, and Faezeh Ghaderi. "Deep forecast: deep
learning-based spatio-temporal forecasting." arXiv preprint arXiv:1707.08110 (2017).

1

METARs to collect data on a single measurement (such as wind speed), rather

than using sequences of ​entire​ METARs as the data input to predict general
weather conditions. To the authors’ knowledge, this specific effort has never

been implemented (it is novel).

Dataset and Features
We access this data through the Iowa State University Iowa Environmental

Mesonet . Available METAR records go back to 1928. 4

A raw METAR is in the following form:

KPAO 252247Z 13007KT 10SM FEW030 OVC120 11/06 A2974

This contains information on the airport location, time and date, wind

direction and speed, visibility (distance), cloud layers coverage and

altitude, and other variables. For this data to be interpretable to a neural

network, we numericalize it, label it, and then reshape it to the input form

X. To numericalize our data, we map continuous measurements between 0 and 1,

and classifying features, such as cloud coverage and weather codes, to a

one-hot encoding. (See Appendix-1 for more details).

Although this varied somewhat between iterations of our network design, the

overall structure of our example matrix was at least 5,000 examples, where

each example was composed of approximately a day of data (data is reported

every ~10 mins at weather stations) and was used to make a prediction four

hours into the future. The amount of data used to train the model can

essentially be arbitrarily large, since each station has data logs extending

for several decades.

Methods and Results
In the last quarter, we have prototyped several neural network architectures

and hyperparameter configurations. Initially, we started with a single

logistic regression neuron that was performing binary classification on

examples labelled 1 if weather was IFR (bad) and 0 if weather was VFR (good).

After training this model on a year of data, we were surprised to see that

our model was performing very well - with a training accuracy, test accuracy

and F1 score of 96.7%, 93.2% and 0.83, respectively. However, we realized

that these unexpectedly high scores were because our initial labelling scheme

was making the weather prediction task too easy and that our model was simply

looking at existing weather conditions and guessing that these conditions

would persist into the future.

4“Iowa State University Iowa Environmental Mesonet,” n.d.

2

In the next iteration of our network design, we devised a new labelling

scheme that would predict ​changes​ in weather conditions: (1) if conditions
began as VFR and ​changed to IFR ​within the prediction window (0) otherwise
(no change, or IFR-> VFR). As expected, the performance of the single neuron

network decreased drastically with this more challenging prediction task,

producing a training accuracy of 90%, a test accuracy of 79% and an F1 score

of 24%. The discrepancy between accuracy and performance is explained by data

imbalance. Since VFR weather is typically much more common than IFR weather,

only a small fraction of examples are positive (1) labels in a typical data

set. As a result, our simple model learned to label nearly all predictions as

(0)s, which resulted in high training/test accuracy but low precision and

recall.

Based on the recommendations of our Project TA Shubhang, we addressed the

data imbalance problem by downsampling. Before shuffling our data into

training and test sets, we randomly sample negative (0) examples to match the

number of positive (1) examples. Using the same logistic regression model as

before, we were able to produce a training and test set accuracy of 93% and

75% (respectively) and an F1 score of 72%.

Encouraged by these results, we moved forward to implementing a deeper neural

network model in TensorFlow. Our early experiments used a three layer network

with 6, 3, and 2 neurons in the first, second and third layers. These layers

were performing LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAX

calculations to predict weather outcomes . With various combinations of 5

different learning rates, minibatch sizes, and dataset sizes we were unable

to match the relatively high performance of our logistic regression model and

could only produce a maximum test accuracy of ~60%.

To improve the performance of our TensorFlow model, we implemented L2

regularization and downsampling in every epoch instead of just performing

downsampling on the whole dataset before it was fed into the network (which

resulted in ignoring most of the examples labelled 0). We hoped that L2

regularization would reduce the overfitting evident in our early experiments

and that epoch-wise downsampling would expose the network to all the examples

labeled 0 in the dataset when iterating. These improvements improved our

network’s performance only marginally: [train: 0.86, test: 0.7]. (See

Appendix-2 for a diagram of our iterative approach, cost-plot comparisons in

Appendix-3.)

5 Heavily based on the TensorFlow Tutorial programming assignment from Improving Deep
Neural Networks_Hyperparameter tuning, Regularization and Optimization.

3

Next, we began the arduous tasks of tuning hyperparameters. The

hyperparameters that we focused on were learning rate and neuron amount in

each layer. We first estimated the ideal learning rate for our existing three

layer model (with 6, 3, 2 neurons) by iterating through different possible

learning rates in a for loop, incrementing the learning rate on the log scale

every iteration.

From this plot, we chose a learning rate of 5*10^-4 and proceeded to iterate

on different neuron sizes in the first and second layers of the network. For

both of these layers, we iterated from 1-5 neurons, resulting in the

following performance visualizations:

This suggests that a model with 3:2:2 nodes - producing a train accuracy of

94%, a test accuracy of 62% and and F1 score of 0.56 - would perform the

best. With this network size, we iterated again through different learning

rates.

4

Although different learning rates could produce significantly higher test

accuracies (~80%) than that of the model described above, other learning

rates did not produce an F1 score higher than 0.56. As such, the

hyperparameters of our final TensorFlow model are as follows:

Learn rate:

1.0E-5

Epochs:
50

Batch
size:64

Lambda:
1.0e-5

Dataset: 2.9 yr,
11,346 examples

Examples: 48 hrs long, 4
hour prediction window

The hyperparameters of our logistic regression model with downsampling and L2

regularization were the following:

Learning rate: 0.005 Epochs: 1000 Dataset: 1 year,
5273 examples

Examples: 48 hrs long, 4
hour prediction window

Conclusion
At the conclusion of our work, we found that our simple logistic regression
model significantly outperformed our layered network model, even after
iterating through many different network configurations. We currently do not
have enough information to definitively say why the single neuron is
outperforming a larger network, but it could be because METAR weather data is
simple in nature and tends to be overfit by larger and more complex networks.

More troubleshooting is certainly necessary. Weather is a complex and

sequential distribution, which we’d imagine would best lend itself to be

modeled by a more complex neural network rather than a single logistic

regression neuron. We believe that working further on the TensorFlow network

would be worthwhile. For instance, the next step for troubleshooting the

network could be to make sure that the network is actually learning weather

features in the way that is typical for neural networks - that is to mean

that different neurons are more or less activated by specific kinds of

weather data. To test this, we could group weather examples into categories

that represent different weather phenomena (very cloudy, clear, rainy, snowy

etc) and feed each weather group into the network to see if the activations

of different neurons prefer specific weather features.

Since weather is sequential, an RNN might also be the best suited

architecture to make weather predictions and could be investigated further.

All of our code for this project can be found here:

https://github.com/JamesW97/CS230-Project

5

https://github.com/JamesW97/CS230-Project

Acknowledgements and Contributions
Firstly, we’d like to thank our Project TA, Shubhang Desai, whose ML wisdom

and good humor was invaluable to our learning (and sanity). We’re also

grateful to Professor Ng and the staff of CS 230, who have crafted an

engaging and accessible learning experience for us all, even given the more

than troubling circumstances of the past quarter.

In terms of contributions of team members, James Wang contributed most of the

team’s good looks and charm. He also wrote the data collection/formatting

code as well as data shuffling/down sampling helper methods, initial

TensorFlow model, and network size tuning methods.

Nate Simon wrote the initial logistic regression and downsampling

implementations as well as the learning rate tuning method and data

visualization methods. He also made the final video and wrote the majority of

the milestone reports, which have been conveniently chopped up and

reformatted into this final report.

References

Ghaderi, Amir, Sanandaji Borhan, and Faezeh Ghaderi. “Deep Forecast: Deep

Learning-Based Spatio-Temporal Forecasting.” ​Arxiv.Org​, n.d.
https://arxiv.org/pdf/1707.08110.pdf​.

“Iowa State University Iowa Environmental Mesonet,” n.d.

https://mesonet.agron.iastate.edu/request/download.phtml​.

Klein, Benjamin, Lior Wolf, and Yehuda Afek. “A Dynamic Convolutional

Layer for Short Range Weather Prediction.” ​IEEE Xplore​, n.d.
http://openaccess.thecvf.com/content_cvpr_2015/papers/Klein_A_Dynamic_

Convolutional_2015_CVPR_paper.pdf​.

Wang, Jiali, Prasanna Balaprakash, and Rao Kotamarthi. "Fast domain-aware

neural network emulation of a planetary boundary layer

parameterization in a numerical weather forecast model." Geoscientific

Model Development (Online) 12.10 (2019).

6

https://arxiv.org/pdf/1707.08110.pdf
https://mesonet.agron.iastate.edu/request/download.phtml
http://openaccess.thecvf.com/content_cvpr_2015/papers/Klein_A_Dynamic_Convolutional_2015_CVPR_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2015/papers/Klein_A_Dynamic_Convolutional_2015_CVPR_paper.pdf

Appendix
1) Numericalizing our input X

i) How we numericalize continuous data.

Measure Raw Numericalizing Method Result

Month/Day Dec 1st Fraction of year 0.907

Time 2:47 AM Fraction of day 0.116

Temperature 10 C Convert to K, div by hottest recorded temp 0.858

Visibility 10 sm Divide by 10 sm 1.000

ii) For classifying features, such as cloud coverage and weather codes, we

used one-hot encoding. (See below for example, cloud coverage is ‘broken.’)

Cloud CLR SKC FEW SCT BKN OVC OVX

Encode 0 0 0 0 1 0 0

Given the number of classifying features in a metar (including rain,

thunderstorms, etc) we currently have 45 one-hot encodings, and will need to

expand this to include countless permutations, such as frozen rain, blowing

snow, etc.

2) Diagram of our iterative process

The following chart is a high-level look at the iteration process from

Methods 1 to 4, based on the positive (+) and negative (-) qualities of each

method.

7

3) Additional Model Performance Values

For Node Sizes: 6,3,2

288 LPE, 24 IBE (Lines Per Example, Increments between examples)

3 years: (1/1/2016 - 1/1/2019)

8

0.5 test

0.4 train

2 years: (1/1/2017 - 1/1/2019)

Train Accuracy: 0.50

Test Accuracy: 0.47

1 year: (1/1/2018 - 1/1/2019) - 100 epochs

Train Accuracy: 0.97

Test Accuracy: 0.6

With lambd = 0.7 regularization:

Train Accuracy: 0.97

9

Test Accuracy: 0.64

1 year: (1/1/2018 - 1/1/2019) - 10 epochs

Train Accuracy: 0.86

Test Accuracy: 0.7

With lambd=0.7 regularization

Train Accuracy: 0.82

Test Accuracy: 0.7

For Node Sizes: 25,12,2

288 LPE, 24 IBE (Lines Per Example, Increments between examples)

With lambd=0.7 regularization

Train Accuracy: 1.0

Test Accuracy: 0.5

10

