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Introduction 
We are applying deep learning to historic weather data at airports in the US 

to make informed short-term predictions (forecasts) of weather conditions. We 

are using weather data in the form of a METAR (Meteorological Aerodrome 

Report). These reports are published by over 900 ASOS (automated surface 

observing system) sites in the US and historical reports are available. 

 

Task 
Our task is to train a model on past data for short-term weather prediction. 

Specifically, if the weather is likely to transition from ‘VFR’ (visual 

flight rules - i.e., good) to ‘IFR’ (instrument flight rules - i.e., bad) 

within a specified prediction window. 

 

Our labeling scheme is the following: 

X -> Numericalized Metar Data for T consecutive historical reports. 

Y -> (1) When the weather state transitions from VFR to IFR at any point in 

the prediction window. (0) Otherwise. 

 

The goal is to input a novel example X and receive an informed prediction of 

the VFR->IFR transition (worsening weather) based on previous weather 

patterns. This could be used in real-time at small airports without weather 

prediction equipment for flight planning. 

 

Related Work 
Deep learning has been applied to weather forecasting, and METARs have been 

used as a data vehicle for such efforts. The Argonne National Lab  showed the 1

promise of deep learning in speeding up large-scale weather forecasting, as 

an “accurate alternative to physics-based parameterizations.” A team at Tel 

Aviv University applied dynamic convolutional layers to radar images for 

short-range weather prediction,  and another team at UT Arlington used METAR 2

data to construct an RNN for wind speed forecasting.  These efforts used 3

1Wang et al. "Fast domain-aware neural network emulation of a planetary boundary 
layer parameterization in a numerical weather forecast model." 
2Klein et al. “A Dynamic Convolutional Layer for Short Range Weather Prediction.” 
3Ghaderi, Amir, Borhan M. Sanandaji, and Faezeh Ghaderi. "Deep forecast: deep 
learning-based spatio-temporal forecasting." arXiv preprint arXiv:1707.08110 (2017). 
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METARs to collect data on a single measurement (such as wind speed), rather 

than using sequences of ​entire​ METARs as the data input to predict general 
weather conditions. To the authors’ knowledge, this specific effort has never 

been implemented (it is novel). 

 

Dataset and Features 
We access this data through the Iowa State University Iowa Environmental 

Mesonet . Available METAR records go back to 1928. 4

A raw METAR is in the following form: 

KPAO 252247Z 13007KT 10SM FEW030 OVC120 11/06 A2974 

This contains information on the airport location, time and date, wind 

direction and speed, visibility (distance), cloud layers coverage and 

altitude, and other variables. For this data to be interpretable to a neural 

network, we numericalize it, label it, and then reshape it to the input form 

X. To numericalize our data, we map continuous measurements between 0 and 1, 

and classifying features, such as cloud coverage and weather codes, to a 

one-hot encoding. (See Appendix-1 for more details). 

 

Although this varied somewhat between iterations of our network design, the 

overall structure of our example matrix was at least 5,000 examples, where 

each example was composed of approximately a day of data (data is reported 

every ~10 mins at weather stations) and was used to make a prediction four 

hours into the future. The amount of data used to train the model can 

essentially be arbitrarily large, since each station has data logs extending 

for several decades.  

 

Methods and Results 
In the last quarter, we have prototyped several neural network architectures 

and hyperparameter configurations. Initially, we started with a single 

logistic regression neuron that was performing binary classification on 

examples labelled 1 if weather was IFR (bad) and 0 if weather was VFR (good). 

After training this model on a year of data, we were surprised to see that 

our model was performing very well - with a training accuracy, test accuracy 

and F1 score of 96.7%, 93.2% and 0.83, respectively. However, we realized 

that these unexpectedly high scores were because our initial labelling scheme 

was making the weather prediction task too easy and that our model was simply 

looking at existing weather conditions and guessing that these conditions 

would persist into the future. 

 

4“Iowa State University Iowa Environmental Mesonet,” n.d. 
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In the next iteration of our network design, we devised a new labelling 

scheme that would predict ​changes​ in weather conditions: (1) if conditions 
began as VFR and ​changed to IFR ​within the prediction window (0) otherwise 
(no change, or IFR-> VFR). As expected, the performance of the single neuron 

network decreased drastically with this more challenging prediction task, 

producing a training accuracy of 90%, a test accuracy of 79% and an F1 score 

of 24%. The discrepancy between accuracy and performance is explained by data 

imbalance. Since VFR weather is typically much more common than IFR weather, 

only a small fraction of examples are positive (1) labels in a typical data 

set. As a result, our simple model learned to label nearly all predictions as 

(0)s, which resulted in high training/test accuracy but low precision and 

recall. 

 

Based on the recommendations of our Project TA Shubhang, we addressed the 

data imbalance problem by downsampling. Before shuffling our data into 

training and test sets, we randomly sample negative (0) examples to match the 

number of positive (1) examples. Using the same logistic regression model as 

before, we were able to produce a training and test set accuracy of 93% and 

75% (respectively) and an F1 score of 72%.  

 

Encouraged by these results, we moved forward to implementing a deeper neural 

network model in TensorFlow. Our early experiments used a three layer network 

with 6, 3, and 2 neurons in the first, second and third layers. These layers 

were performing LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAX 

calculations to predict weather outcomes . With various combinations of 5

different learning rates, minibatch sizes, and dataset sizes we were unable 

to match the relatively high performance of our logistic regression model and 

could only produce a maximum test accuracy of ~60%. 

 

To improve the performance of our TensorFlow model, we implemented L2 

regularization and downsampling in every epoch instead of just performing 

downsampling on the whole dataset before it was fed into the network (which 

resulted in ignoring most of the examples labelled 0). We hoped that L2 

regularization would reduce the overfitting evident in our early experiments 

and that epoch-wise downsampling would expose the network to all the examples 

labeled 0 in the dataset when iterating. These improvements improved our 

network’s performance only marginally: [train: 0.86, test: 0.7]. (See 

Appendix-2 for a diagram of our iterative approach, cost-plot comparisons in 

Appendix-3.) 

 

5 Heavily based on the TensorFlow Tutorial programming assignment from Improving Deep 
Neural Networks_Hyperparameter tuning, Regularization and Optimization. 
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Next, we began the arduous tasks of tuning hyperparameters. The 

hyperparameters that we focused on were learning rate and neuron amount in 

each layer. We first estimated the ideal learning rate for our existing three 

layer model (with 6, 3, 2 neurons) by iterating through different possible 

learning rates in a for loop, incrementing the learning rate on the log scale 

every iteration. 

 

 

From this plot, we chose a learning rate of 5*10^-4 and proceeded to iterate 

on different neuron sizes in the first and second layers of the network. For 

both of these layers, we iterated from 1-5 neurons, resulting in the 

following performance visualizations: 

 

This suggests that a model with 3:2:2 nodes - producing a train accuracy of 

94%, a test accuracy of 62% and and F1 score of 0.56 - would perform the 

best. With this network size, we iterated again through different learning 

rates. 
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Although different learning rates could produce significantly higher test 

accuracies (~80%) than that of the model described above, other learning 

rates did not produce an F1 score higher than 0.56. As such, the 

hyperparameters of our final TensorFlow model are as follows: 

 

Learn rate: 

1.0E-5 

Epochs: 
50 

Batch 
size:64 

Lambda: 
1.0e-5 

Dataset: 2.9 yr, 
11,346 examples 

Examples: 48 hrs long, 4 
hour prediction window 

 

The hyperparameters of our logistic regression model with downsampling and L2 

regularization were the following: 

 

Learning rate: 0.005 Epochs: 1000 Dataset: 1 year, 
5273 examples 

Examples: 48 hrs long, 4 
hour prediction window 

 

Conclusion 
At the conclusion of our work, we found that our simple logistic regression 
model significantly outperformed our layered network model, even after 
iterating through many different network configurations. We currently do not 
have enough information to definitively say why the single neuron is 
outperforming a larger network, but it could be because METAR weather data is 
simple in nature and tends to be overfit by larger and more complex networks. 
 

More troubleshooting is certainly necessary. Weather is a complex and 

sequential distribution, which we’d imagine would best lend itself to be 

modeled by a more complex neural network rather than a single logistic 

regression neuron. We believe that working further on the TensorFlow network 

would be worthwhile. For instance, the next step for troubleshooting the 

network could be to make sure that the network is actually learning weather 

features in the way that is typical for neural networks - that is to mean 

that different neurons are more or less activated by specific kinds of 

weather data. To test this, we could group weather examples into categories 

that represent different weather phenomena (very cloudy, clear, rainy, snowy 

etc) and feed each weather group into the network to see if the activations 

of different neurons prefer specific weather features. 

 

Since weather is sequential, an RNN might also be the best suited 

architecture to make weather predictions and could be investigated further. 

 

All of our code for this project can be found here: 

https://github.com/JamesW97/CS230-Project 
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Appendix 
1) Numericalizing our input X 

i) How we numericalize continuous data. 

Measure Raw Numericalizing Method Result 

Month/Day Dec 1st Fraction of year 0.907 

Time 2:47 AM Fraction of day 0.116 

Temperature 10 C Convert to K, div by hottest recorded temp 0.858 

Visibility 10 sm Divide by 10 sm 1.000 

 

ii) For classifying features, such as cloud coverage and weather codes, we 

used one-hot encoding. (See below for example, cloud coverage is ‘broken.’) 

 

Cloud CLR SKC FEW SCT BKN OVC OVX 

Encode 0 0 0 0 1 0 0 

 

Given the number of classifying features in a metar (including rain, 

thunderstorms, etc) we currently have 45 one-hot encodings, and will need to 

expand this to include countless permutations, such as frozen rain, blowing 

snow, etc. 

 

2) Diagram of our iterative process 

The following chart is a high-level look at the iteration process from 

Methods 1 to 4, based on the positive (+) and negative (-) qualities of each 

method. 
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3) Additional Model Performance Values 

For Node Sizes: 6,3,2 

288 LPE, 24 IBE (Lines Per Example, Increments between examples) 

3 years: (1/1/2016 - 1/1/2019) 
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0.5 test 

0.4 train 

2 years: (1/1/2017 - 1/1/2019) 

 

Train Accuracy: 0.50 

Test Accuracy: 0.47 

 

 

1 year: (1/1/2018 - 1/1/2019) - 100 epochs 

 

Train Accuracy: 0.97 

Test Accuracy: 0.6 

 

With lambd = 0.7 regularization: 

 

Train Accuracy: 0.97 
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Test Accuracy: 0.64 

 

1 year: (1/1/2018 - 1/1/2019) - 10 epochs 

 

Train Accuracy: 0.86 

Test Accuracy: 0.7 

 

With lambd=0.7 regularization 

 

Train Accuracy: 0.82 

Test Accuracy: 0.7 

 

For Node Sizes: 25,12,2 

288 LPE, 24 IBE (Lines Per Example, Increments between examples) 

With lambd=0.7 regularization 

 

Train Accuracy: 1.0 

Test Accuracy: 0.5 
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