Link Prediction with Graph Neural Networks and
Knowledge Extraction

Zecheng Zhang Danni Ma Xiaohan Li
zecheng@stanford.edu dannima@stanford.edu x119880@stanford.edu
Abstract

Link prediction is a core graph task by predicting the connection between two
nodes based on node attributes. Many real-world tasks can be formed into this
problem such as predicting academic article citations for specific topic. Recently,
the advancement in graph neural network (GNN) has shifted the link prediction into
neural style. Many GNN layers have been able to be applied to the link prediction
task directly. But due to some graph structure and graph neural network limitations,
the performance of the neural style link prediction sometimes will be negatively
influenced. To address these issues, we propose a novel approach to implicitly
guide GNN with extracted knowledge. The experiments on a biomedical dataset
illustrates the state-of-the-art performance of our method.

1 Introduction

Many real-world tasks can be transformed into the graph related tasks, including the node classifica-
tion, graph classification and link prediction etc. The link prediction is the crucial one. For example,
predicting the citations among articles is usually transformed into the link prediction. The predicted
citations will thus be helpful for further academic research. Recent development on graph neural
network (GNN) provides the most promising approach to solve the link prediction task. Nevertheless,
most GNNs learn the node embeddings through a relatively “shallow” neighborhood which contains
information only two or three hops away from each node. In addition, in real-world link prediction
tasks, the graphs are usually constructed through cut from a larger one or the nodes are manually
selected from a specified pool. In the article citations prediction, articles are usually manually selected
from specific topics. Those graphs usually suffer from some structural issues including the sparsity.
Due to the shallowness of the neighborhood and those structural issues, the performance of GNNs on
link prediction task will be negatively influenced.

Entity
Article

—> Message passing edge

----- Implicit knowledge edge

LR 4 Predicted edge

Figure 1: An overview of the general pipeline.

CS230: Deep Learning, Spring 2020, Stanford University, CA.



To better address the problems, we propose a knowledge driven approach to implicitly add edges
before the training of GNNs. The method not only leverages the extracted node knowledge, but
also utilizes samplings to improve the scalability. Extensive experiments show that our method can
improve the link prediction results and we also evaluate the possible reasons why the prediction
results are improved. The overall pipeline of our method is shown in Figure[I] and in the following
sections we will describe on our method in details.

2 Related Work

Our method draws inspiration from graph neural networks, limitation of GNNs and the knowledge
extraction. In this section, we will give a brief overview of these area.

Graph Neural Network. Graph neural network has been a popular research area for years. Recent
advancement in graph neural networks offers the state-of-the-art learning ability on graph related
tasks. GCN [6] utilizes spectral convolution to aggregate node features with respect to the local
neighborhood. GraphSAGE [3] introduces a spatial aggregation of local node information by different
aggregation ways. GAT [11] proposes an attention mechanism in the aggregation process by learning
extra attention weights to the neighbors of each node.

Limitaton of Graph Neural Network. The number of GNN layers is limited due to the Laplacian
smoothing [10]. Thus, the number of hidden layers in GNN usually is set to two or three. More
layers will possibly result in the Laplacian smoothing result which will reduce the performance of
learning. Recently a much deeper version of GCN [§] is proposed that the number of hidden layers
can be added to hundred.

Knowledge Extraction. Knowledge extraction task in NLP has been extensively studied for decades.
It includes many specific ones such as the named entity recognition (NER). Those extractions
are important to many domains including the biomedical area [1l]. The deep learning based NER
identifies text spans into the named entities, and provides decent recognition performance [9]]. Recent
development of BERT [2] has instigated domain specific pretraining for NER such as the BioBERT
[7] and BERN [4].

3 Real-world Link Prediction

3.1 Problem Statement

In real-world link prediction tasks, the graph G is usually a domain specific graph that each node
contains information. For example, in the biomedical citation prediction task, the nodes are biomedical
articles which have text information on genes, diseases and drugs. The link prediction task is that
given the node features X, the model can output whether two nodes are connected by an edge. To be
more specific, GNN utilizes edges EF € GG (message-passing) to aggregate and learn node embeddings.
The similarity score of two node embeddings will decide whether they should be connected. The
errors (loss) on predictions will be backpropagated and updated the weights in neural networks.

3.2 Drawbacks

Graph Structure: Real-world graph G is usually cut from a larger network, and after outlier cleaning,
it is usually very sparse and has many disconnected components. Those graph structural attributes
can prevent the message-passing training for node embeddings and thus cause insufficient learning.

GNN Architecture: Mentioned in the related work section, usually GNNs are shallow. The limited
number of layers prevents learning complex and high-level knowledge from the input features directly.
Although some models can be stacked to hundred layers [8]] in the point clouds dataset, but whether
it works on smaller traditional link prediction task is still unstudied.

Node Feature: The input node features to the GNN usually are simple. Bag-of-word is often used if
the node features are text. There are two reasons why choosing simple node features. First, using
high-level node features can be expensive since we need to get the features to all the nodes. Second,
the high-level node features might introduce extra noise which might even reduce model performance.
But using only simple node features also limits the learning ability as the GNNs are often shallow.



4 LIKE: Link Prediction with Knowledge Extraction

To address the drawbacks mentioned above, we propose a method called LIKE that the graph neural
networks can be implicitly guided by high-level extracted knowledge.

4.1 Knowledge Extraction

The advanced knowledge extraction methods, such as BERN [4]], can extract high quality knowledge.
An NER example by BERN is shown in Figure[2] But as mentioned in the drawbacks section, it is
expensive to extract high-level knowledge for all nodes. Thus, in LIKE we only extract a sampled
fraction of nodes. The number of samples is shown below where N is the number of nodes in G:

Ng=~-N wherey < 1 (1)
Then we extract the knowledge for the sampled nodes, by using methods such as NER, which is

(BERN:326418702) - Gene

NUCEETRN .. (MESH:D011019, BERN:107379501) - Disease

(CHEBI:6888, BERN:4261703) - Drug

—>» Messge passing edge
X . (CHEBI:6888, BERN:4261703) - Drug

i @ Article node @— (MESH:D011019, BERN:107379501) - Disease
! ' (CUl-less) - Gene

FEEEREEEE Implicit knowledge edge

. L . [(MESH:D011019, BERN:107379501) - Disease
N <N 3 craphhop t (CHEBI:16651, BERN:315402303) - Disease

(CUl-less) - Gene

Figure 2: An illustration of the knowledge connected edge.

denoted as set S for N, random nodes:
552{817827"' 78N5} (2)

Each item s; is a set of knowledge attributes and lets assume s; is associated with node v; € Vj,
where V; is the overall sampled node set. As shown in Figure[2] s; can be set of entity tuples.

4.2 TImplicit Knowledge Edge

As mentioned in previous section, there might be noise in high-level extracted knowledge features. So,
they are not proper to be used as the input node feature directly. Also, the input requires consistency
that all nodes should be extracted which will cost too much. Thus, we propose a concept of implicit
knowledge edge to implicitly incorporate the high-level knowledge with similarity constraints.

We first set a threshold « and use Jaccard similarity to decide whether two sets s; and s; (for sampled
nodes) are similar enough to be connected by an implicit knowledge edge. The set of implicit
knowledge edges is added according to the equation below:

- U {{(vi,vj),(uj,vi)}, if 2524 > avand (vi,v;) ¢ E and (v;,v;) ¢ B
)

v €Vs v; EN (N (v; 0, otherwise

3)
We set « to a relative high value to constrain the noise by making sure two nodes are very similar in
high-level knowledge. We only compute the similarities among two-hop neighborhood, where the
neighborhood of a node is denoted as \V, because comparing all pairs in S, the complexity is O(N?)
which will still be very expensive. We argue that adding the set of )}, edges in message-passing will
implicitly help the GNN learn the node embeddings through the constrained guide from extracted
high-level knowledge. These guided and enriched message-passing edges will improve the model
during the training.
Sometimes adding an edge into the graph might not help the GNN learn node embeddings much.
One scenario is that when the node is a hub node, which has the number of edges much larger than

that in average. Adding an edge in this case might cause the model learn something too common and
somehow result in Laplacian smoothing effect. So, we add a filtering criteria to the nodes:

1(0) = {1, if deg(v) < 8 @

0, otherwise



We notice that many components in G are disconnected due to the outlier removal and graph cut. Many
of the components actually share some useful information that can be helpful in GNN learning. So,
we sample 7 node pairs in V; which can add implicit knowledge edges between different components:

n-1 U {{(vi,vj»(vj,vi)}, if {254 > avand (v;,v;) ¢ Eand (v),0;) ¢ B

=, 0, otherwise

(5
4.3 Combined with GNN

Then we combine the implicit knowledge edges with the training of GNN. Lets assume we have a
one GNN layer G, edges for loss computation Ej,ss a similarity function f. The forward process can
be formulated as the following:

h=0(f(G(X,EUE,UE,)), Ess) (6)

The GNN layer G takes the node attributes X and edges £ U Ej, U E,. for message-passing. The
similarity function f takes the learned node embedding from the GNN layer G and loss computation
edges Ej,ss. For each edge e € (Ej,ss) where e connects node v; and vj, the f, usually cosine
similarity, will compute the similarity score between them. At last, we will input the similarity score
to an activation function o, such as sigmoid, to get the result h in range of 0 to 1 and determine the
connection by setting a threshold 0.5.

The layer in G is to aggregate information of nodes in the neighborhood by deep learning based
methods. Some GNN layers are frequently used including the GraphSAGE layer (SAGE) [3] and
graph attention layer (GAT) [IL1] etc.

5 Experiment
We conducted experimentsﬂ on a biomedical dataset to show the effectiveness of our approach.

5.1 Dataset

The dataset is from the COVID-19 Open Research Dataset Challengeﬂ It consists about 52000
manually selected scholarly articles with abstract corpus and references. After the cleaning, the data
is formed into a graph with 27709 nodes (articles) and 84849 edges (citations). We use the 2842
dimension bag-of-word representation of the abstract as node features. The graph has a 3.062 average
degrees and 981 weakly connected components, which is sparse and relatively disconnected.

5.2 Experiment Settings

Metrics: We use the accuracy and ROC-AUC score which are frequently used in link prediction.

Dataset: The dataset is splitted into three parts (train, validation and test) with ratio 85 : 5 : 10.
Since this is a binary classification task, we also sampled the same number of negative samples for
each set. The negative samples are drawn disjointly, which means that the negative edges will not
overlap with the positive edges and negative edges in other sets. The positive edges have labels 1 and
negative ones have labels 0.

GNN Hyperparameter: The number of GNN layers is 2 with hidden size 16. Trained with Adam
optimizer [5] with learning rate 0.001 and weight decay 5 x 10~%.

GNN layer: The GNN layers include the SAGE [3]] and GAT [[11]].

LIKE Hyperparameter: The hyperparameters might be different for different GNN layers. But the
usual one is to set « = 0.7, 8 = 10, v = % and » = 20000.

Knowledge Extraction: We use BERN [4] to extract named entities for the abstract of each articles.

Thttps://github.com/zechengz/gnn-ke
“https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge


https://github.com/zechengz/gnn-ke
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge

Average Accuracy Min and Max Accuracy

0.70 /

> >
(o) Q
© 0.65 ©
3 3
o 1o
o o
© j ©
0.60
—— LIKE LIKE
without 0.55 i without -
0.55 15 : . : . . : . ; .
0 50 100 150 200 0 50 100 150 200
epochs epochs
(a) GAT
Average Accuracy Min and Max Accuracy
o~ {
0.70 1 ’ 0.70 f’ﬂﬁ - e ‘
- 0.65 1 > 065 /
[} H H [*)
e | | o |
3 i i 3 |
S 0.60 o 0.60 A
© ©
0.55 - | 0.55
—— LIKE LIKE
without without
0.50 ; : 0.50 ; :
0 50 100 150 200 0 50 100 150 200
epochs epochs

(b) GraphSAGE

Figure 3: Maximum, minimum and average test accuracy for each method by running 5 times.

5.3 Experiment Results

As shown in Table[T] the best performance of LIKE outperforms that of the models using only the
original edges in message-passing. To further prove our method is better, we run each model 5 times
and compare the maximum, minimum and average test accuracy. The results are shown in Figure[3]

- GAT | GAT (LIKE) | SAGE | SAGE (LIKE)

Accuracy T2.01% | 72.46% (+) | 72.56% | 73.03% (+)
ROC-AUC score | 85.41% | 86.36% (+) | 85.39% | 85.51% (+)

Table 1: Best link prediction results for each methods on test set.

5.4 Evaluation

We explored on the change of graph structures and try to find why our method can outperform the
baselines. If we add 596 random implicit knowledge edges, set « = 0.7 and 5 = 10, the LIKE will
outperforms the original GNN. We analyzed the graph structure and found the graph connection in the
message-passing stage will be somehow densified with the number of weakly connected components
is reduced around 4% and the average degree of the graph increased by 0.1. We argure that the
densification might be the reason that the learned node embeddings in GNN is improved.

6 Conclusion

In this project, we propose a novel idea to implicitly incorporate rich knowledge during the GNN
message-passing in training. Because the limitations of the traditional GNN layers and the issues
of the real-world link prediction graphs can negatively influence the performance, our implicit
knowledge edge can help to reduce those problems. According to the experiments on a biomedical
dataset, our method do help to better the overall performance in the real-world link prediction task.



7 Contribution

Zecheng Zhang wrote the code for link prediciton. Danni Ma helped on the knowledge extraction
part and Xiaohan Li analyzed the graph structures. All of three contributed to the proposal writing,
two milestone writings, method discussion and final report writing.

References

[1] Aaron M Cohen and William R Hersh. A survey of current work in biomedical text mining.
Briefings in bioinformatics, 6(1):57-71, 2005.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[3] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in neural information processing systems, pages 1024—-1034, 2017.

[4] Donghyeon Kim, Jinhyuk Lee, Chan Ho So, Hwisang Jeon, Minbyul Jeong, Yonghwa Choi,
Wonjin Yoon, Mujeen Sung, , and Jaewoo Kang. A neural named entity recognition and
multi-type normalization tool for biomedical text mining. IEEE Access, 7:73729-73740, 2019.

[5] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[6] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[7] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and
Jaewoo Kang. Biobert: a pre-trained biomedical language representation model for biomedical
text mining. Bioinformatics, 36(4):1234-1240, 2020.

[8] Guohao Li, Matthias Miiller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gens go as deep
as cnns? In The IEEE International Conference on Computer Vision (ICCV), 2019.

[9] Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li. A survey on deep learning for named entity
recognition. IEEE Transactions on Knowledge and Data Engineering, 2020.

[10] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

[11] Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.



	Introduction
	Related Work
	Real-world Link Prediction
	Problem Statement
	Drawbacks

	LIKE: Link Prediction with Knowledge Extraction
	Knowledge Extraction
	Implicit Knowledge Edge
	Combined with GNN

	Experiment
	Dataset
	Experiment Settings
	Experiment Results
	Evaluation

	Conclusion
	Contribution

