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Abstract

This project reconstructed the electric-field vs time profiles of attosecond X-ray
pulses from images taken by a coaxial velocity map imaging spectrometer (VMI)
using a deep neural net (NN). We trained our 5-layer fully connected network on
simulated VMI images, then tested it on experimental VMI images taken at SLAC.
Here, we describe our results, and compare our method to the non-linear fitting
algorithms used in previous analyses.

1 Introduction

The coaxial velocity map imaging spectrometer (VMI) at SLAC measures the time-profile of at-
tosecond X-ray pulses in the Linac Coherent Light Source (LCLS). In the VMI, an X-ray pulse is
overlapped with a circularly-polarized infrared (IR) laser pulse in the presence of a gas. The X-ray
pulse ionizes the gas, producing photoelectrons. The ejected electrons are separated by momenta,
producing a 2D image when they hit the detector. From these images, information about the electric
field of the X-ray pulse that produced the photoelectrons can be reconstructed (for a nice visual
representation, see Appendix A). Our project’s goal is to take an experimental VMI image and retrieve
the electric-field time profile of the X-ray pulse.

2 Related work

2.1 Non-linear Fitting Algorithms

Past work reconstructing X-ray pulses from VMI images has primarily relied on decomposing the set
of possible simulated VMI spectra into a set of von Neumann basis functions, and using non-linear
fitting algorithms to express a given image as a linear combination of these basis functions [2]. These
methods are reliable but slow, and require a good initial guess of the basis coefficients. They also
require preprocessing of experimental images to reduce noise.

2.2 Reconstructing VMI images with deep learning

A recent student project [3] worked with this data set, and tried to determine good von Neumann
basis coefficients by feeding VMI images into a Convolutional Neural Network (CNN). The intention



was that these coefficients could be fed into the non-linear fitting algorithm to refine the result. This
achieved some success, but had difficulties reconstructing the phase of the electric field. The author
of that project advised us against using a CNN, as it is insensitive to the absolute location of pixels in
an image, which is tied to the phase of the IR field in our problem.

The group who developed the non-linear fitting algorithm also briefly tried a neural network to predict
the electric-field time profile of the X-ray pulse from VMI images. While that project did not achieve
much success, since the simulated data [4] which we received was formatted in the correct format for
that algorithm, we used some functions from that project to develop our baseline model.

2.3 Related Experimental Techniques utilizing Machine Learning

To our knowledge, the three efforts described above are the only projects which have worked on
reconstructing VMI images of infrared-streaked X-ray pulses. However, other experimental methods
have been utilized to measure attosecond pulses, and some have been assisted by deep learning. For
example, in frequency-resolved optical gating, (FROG), an XUV pulse is split into two identical
pulses, then overlapped with a time delay, 7, in the presence of a gas. By scanning 7 and measuring
the energy of photoelectrons produced, the electric field of the XUV pulse can be reconstructed via a
non-linear fitting method [5]]. Previous papers have circumvented the slow non-linear fitting methods
with a deep neural net. One group used a 3-layer CNN followed by a 3-layer fully-connected network,
and was successful at reconstructing both the electric field magnitude and phase of XUV pulses [6].
In a related technique, Frequency-resolved optical gating for complete reconstruction of attosecond
bursts (FROG-CRAB) [[7]], a 3 (or more) layer CNN followed by a 2-layer fully-connected network
was implemented [8]. These groups found that this CNN to fully-connnected network architecture
worked well for them, even with moderately sized training sets (60,000 and 80,000 training examples
respectfully), suggesting this may be an architecture worth exploring in the future.

3 Dataset and Features

We were provided two scripts used to generate simulated training examples. The first produces the
von Neumann basis functions of possible VMI streaking spectra. We calculated these bases on a 64 x
64 grid to reduce aliasing effects due to calculating a circular distribution on a rectangular grid.

The second script generates a training set by randomly sampling possible combinations of these bases
for X-ray beams of a given central frequency, frequency spread, 1st order spectral phase (arrival of the
X-ray pulse in time), 2nd order spectral phase (frequency chirp) and 3rd order spectral phase (which
governs additional higher order effects). We also scanned over possible values of the streaking laser
intensity, EO. The script produces examples and labels of 64 x 64 pixel simulated VMI images and
electric-field time arrays with 64 real elements, 64 imaginary elements, and one element containing
EO. We then binned the VMI images down to 32 x 32 to make our model manageable to run.

We generated a set of 1,070,920 simulated VMI images and electric-field time profiles from three
different sets of the von Neumann basis functions. 998,334 of these training pairs went into the
training set. Since 998,334 images could not be held in memory at once, we trained on each basis set
sequentially, causing bumps on the training set cost curve in Fig. 3] Training pairs within each basis
set were randomly shuffled before training. Our development set consisted of 62,500 training pairs.

We also generated 12,000 simulated images containing noise using a frequency-filtering method
depicted in Fig. [ We extracted noise from 100 experimental images, binned to 256 x 256 pixels,
by fourier-transforming the images, filtering out low frequencies then fourier-transforming back.
Six modifications of these extracted noise images were produced by reflecting across the x-axis,
y-axis or both axes, or by rotating 90°, 180°, or 270°, producing 600 noise images. For 20 different
streaking laser intensities, EQ, these modified noise images were normalized to the input intensity of
the simulated image, then added to a randomly sampled simulated image, producing 12,000 images.

4 Methods

We used a 5-layer fully-connected network with tanh activation functions and 4,886,657 trainable
parameters, as depicted in Fig.
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Figure 1: Noise addition by frequency filtering.
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Figure 2: Network architecture.

We modeled our network in Tensorflow 1 [9]. Back-propagation was performed using an Adam
Optimizer [10], which modifies a gradient descent algorithm to correct for bias caused by initialization
and implements a variable effective learning rate to train more quickly in the beginning of training,
and more slowly later in training. We implemented a least-squares cost function, given in Fig. 3]
where ny, is the number of outputs in the output layer (ny, = 129) and m is the number of training
examples. During development, we scanned over possible learning rates and minibatch sizes, and
found we needed a fairly small minibatch size and very small learning rate for the best performance.
Based on our scan, we chose a minibatch size of 64 and a learning rate of 0.00001. We trained
our model for 1100 epochs. We trained on three different training sets, resulting in bumps in the
minibatch cost curve; however, the cost for a constant development set consistently decreased.
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Figure 3: Cost functions.
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Figure 4: The parameters used to predict the electric-fields were trained for 200, 400, and 1100
iterations. (Top) Spectra for four examples with fitted gaussians in black. (Bottom) Histogram of
bandwidth (in eV) of predicted pulses for 496 experimental examples.

150

000 {
1000
500 w0
ol ! o
s

L

e

We ended up early stopping training our parameters at 400 iterations, where the development set cost
was 1.15. Although the cost was still decreasing, our other sanity checks were revealing concerning
results. For a set of 496 experimental images we calculated the frequency spectra of the predicted
electric fields by taking the Fourier transform, shifting the zero-frequency component to the center of
the spectrum to remove the carrier frequency, and multiplying by the complex conjugate. Based on
experimental measurements, we expect the electric field pulses to be gaussian-like in shape and have
a central bandwidth of approx. 7.5 eV. However, as the training iterations increase, we see the spectra
become more spiky and the spectral distribution broaden away from 7.5 eV, as shown in Fig. d Our
training set was randomly generated, and so contains both realistic and unrealistic electric-fields. We
suspect as the training iterations increase, the model learns to better fit the unrealistic pulses, at the
cost of fitting the realistic (single, narrow peak) pulses worse.

5 Experiments/Results/Discussion

We trained and tested our model on simulated data. For a simulated data set of size 62,500, our mean
squared error was 1.15.
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Figure 5: Predicted and true electric fields for example simulated data. The solid lines show the
amplitude, and the dotted lines show the phase. The phase has been scaled for clarity.

The nonlinear fitting algorithm produces 20 possible electric-field profiles per shot, shown as trans-
parent grey lines in Fig. [6] There is good agreement between our model’s predictions for amplitude
of the electric field and the verified fitting algorithm.
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Figure 6: Comparison of nonlinear fitting algorithm and NN model. Normalized amplitudes are
shown by solid lines. Predicted phase is shown by the dotted line, and is scaled for clarity.



We trained our model on simulated data without noise; however, the experimental data had noise
present. From the model’s predicted electric-field we can simulate a VMI image, and compare this
predicted image to the model input image, as shown in Fig. [7} Comparing the two, it appears that our
model has learned to ignore the center of the VMI image and the outer ring, where the signal is low
and conveniently where noise is present.

Normalized Normalized Abs Squared
Input Image Predicted Difference Difference

Figure 7: Comparison of an input VMI image with an image from a predicted electric field. The
absolute value of the difference between the left two images, and the squared difference are shown.
The input and predicted images have been normalized to their respective max values.

Figs. [6]and [7] show our NN’s fitting to processed experimental images. Ultimately, we would like our
model to perform well on unprocessed images. To help our model learn what noisy experimental
images look like, we trained our model for an additional 100 epochs on 12,000 simulated images
with added noise. A few sample shots for this method compared to our original algorithm are shown
in Fig.[8] While we don’t have a non-linear fit to compare these values to for this dataset, we see that
the fit is fairly consistent for some, while very different for others. The fit seems to change the most
when part of one lobe is fainter than the rest. This suggests the algorithm may be ignoring fainter
pixels in the inner ring as noise.
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Figure 8: Comparison of NN model trained purely on simulated data to NN model trained for 100
additional epochs on 12,000 simultated images with added noise. A) Four sample unprocessed
experimental images binned to 32 x 32. B) The NN algorithm predictions for the same four images,
with solid lines for intensity and dashed lines for phase.

6 Conclusion/Future Work

We successfully demonstrated agreement between our model output and a previously verified algo-
rithm. It is important to note that our model is both fast and also extracts phase information, which
matches well for simulated images but has yet to be verified for experimental data.

Our model can be expanded on by exploring a deeper/broader model that may be better able to fit
more interesting pulses. In particular, it may be of interest to train a similar model on larger 64 x 64
images, which may contain more information in the fine structure. To do this, we might also attempt
other architectures, such as adding a few convolutional layers, to reduce the total number of trainable
parameters in our system. We also may want to include other interesting pulse shapes in our dataset,
such as two pulses close in time (see Appendix C).

7 Contributions

PF and RM discussed the algorithm architecture, hyperparameters, metrics and results together, and
contributed equally to the production of reports. PF ran the algorithm training, imported and analyzed
the results from the non-linear fitting method for comparison, and produced the fit interpretation plot
in Fig.[/| RM investigated two methods of producing a dataset of simulated images with added noise,
the first of which (using style transfer) was not used, but is shown in Appendix B, and the second,
frequency filtering, is shown in Fig.[T}
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Appendix A

Figure 9: Production and measurement of attosecond X-ray pulses at LCLS. An accelerated electron
bunch (green) passes through a series of undulator magnets to produce X-rays (blue). In the VMI,
the X-ray pulse is overlapped with an infrared pulse in the presence of a gas jet. Photoelectrons are
produced and imaged on a 2D screen to reconstruct the pulse’s time-profile [1].

Appendix B

Fig. [I0]shows our initial attempt at adding noise to simulated images. While a lot of effort went into
this, ultimately adding noise by frequency filtering was computationally faster and produced results
better resembling experimental images.
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Figure 10: Initial noise addition method using style transfer algorithm.

Starting with homework C4M4 as a template, we performed style transfer using pretrained values
from the 19-layer Convolutional Neural Net VGG-19 [[11]]. We first binned a simulated image and
an experimental image to 256 x 256 pixels. Since the VGG network requires a three channel input,
and our VMI images have one channel, we copied our single channel into all three channels, then
averaged the result at the end to get a one channel output. We performed style transfer with 60% style
weight from convl_1, the first layer, and 40% style weight from conv5_1, the 13th layer. These two
were chosen by visibly comparing style transfers from different layers after 200 epochs. Conv1_1
provided very small textures, and conv5_1 provided a fairly uniform background.

To prepare these images to feed into our neural net, we then binned them down to 32 x 32 pixels.
We found it was necessary to perform the style transfer with larger images when using the VGG-19
dataset, however. The VGG-19 dataset is designed for images of 300 x 400 pixels, and thus we expect
the trained filters are too large to stylize details in comparably tiny 32 x 32 images.

While style transfer may be a viable method for noise modeling if we had pre-trained parameters on
similar images, other methods can achieve a similar or better effect without using a NN.



Appendix C

Fig. [[T]shows a test of our algorithm on two-pulse data, which it was not exposed to in the training
set.
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Figure 11: As expected, a model trained exclusively on single pulse data cannot reconstruct electric

fields with two pulses. It is interesting that it does predict a single pulse in between the the two real
pulses
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