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Abstract

We investigate the capacity of synthetic aperture radar (SAR) data for early-season
crop classification. Specifically, we develop an image segmentation approach to
discern land cover and crop types by the middle of the main growing season. We
employ a UNet architecture, achieving overall accuracy of 75% on held out data in
the US Midwest.

1 Introduction

Information on the distribution of crop types early on in a season can be useful in predicting food
shortages or surpluses (1), particularly in developing countries where crop data is relatively sparse.
Traditional methods, such as ground or aerial surveys of crop distributions, tend to be tedious to
conduct and inconsistent. While past work has examined using satellite imagery for crop type
mapping, the performance of learning models trained on spectral images is reduced from variability
in cloud coverage, weather, and other atmospheric conditions.

Our objective is to develop a learning model which identifies crop types near the planting period
using synthetic-aperture radar. We use exclusively Sentinel-1 SAR data (12), instead of adding
spectral (visible wavelength) data as well, for two main reasons. Firstly, SAR has the advantage of
‘seeing’ through clouds, and thus having more consistent, high-quality data coverage across the world.
Although the United States Midwest (our study area) is not particularly cloudy, we want to build
an approach that can generalize well to equatorial regions which have much higher growing season
cloud cover (18). Secondly, we want to explore the specific capacity of Sentinel-1 for early season
crop classification, given that (a) early seasons across the globe bring rain and clouds, rendering
spectral data unhelpful, and (b) early season crop classification using SAR data remains relatively
unexplored.

2 Related Work

Previous efforts at crop type mapping using spectral satellite imagery have employed a wide range of
modelling approaches. More basic machine learning approaches include pixel-based random forests
and change detection approaches (4; 6). Increasingly, though, deep learning approaches have gained
popularity to decrease pre-processing and automatically learn complex features. Examples include
vanilla deep neural networks (5), CNN implementations such as ResNet, LeNet, and CaffeNet to
leverage spatial context within the imagery, and RNNs such as bidirectional LSTMs to extract signal
from temporal elements of crop development (7; 11).
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However, for our specific problem, we seek to fully segment images by less than halfway through
the growing season. This limits the extent of our temporal signal, and makes bidirectional LSTMs
inappropriate for the task. Furthermore, though pixel-wise approaches could work, they miss valuable
signal in the surrounding pixels. To this end, Wang et al. employ a UNet architecture to fully segment
images for crop type classification with good success even in a label-limited context (16). Rustowicz
et al. (10) extend this work by employing a convolutional LSTM which simultaneously incorporates
both temporal and spatial signal.

Our context, with a different data set that uses only SAR data over a limited time frame, calls for an
approach which combines elements of the above. Because we have fully labeled data over a wide
spatial extent but only a short time series, we will experiment with convolutional UNet and combined
ConvLSTM approaches which can appropriately incorporate spatial and temporal data.

3 Dataset and Features

Our dataset comes from the Sentinel-1 satellite, which collects Synthetic Aperture Radar (SAR)
images (12). SAR data involves ‘active’ (sending out) microwaves in the C-band (certain
wavelength/frequency), and measuring the returned backscatter. Backscatter is influenced by both
the vegetation on the ground and the moisture content of both vegetation and soil. As a result,
Sentinel-1 has been used in many agricultural contexts including soil moisture mapping, yield predic-
tion, and crop classification (13; 14; 15) Our work, as detailed below, will focus on crop classification.

We define a 450,000 km2 study area over the United States Midwest, as in Wang et al. (16). Within
this region, we create an 8x8 grid of equally sized patches. Then, for the purposes of this work, we
randomly select 21 of these grid cells for analysis (due to exporting data limits). In order to collect
our image data, we employ Google Earth Engine, an online cloud computing platform (17). For
our predictors, we have 3 image bands: 2 polarizations (VV, VH) and the incidence angle of the
transmission. However, since temporal changes over the growing season can provide valuable signals,
we incorporate three observations of each of these predictors. For each of the first three months of the
growing season, defined as April through June, we take a pixel-wise median composite of available
Sentinel-1 imagery. The resulting data set has 9 bands: 3 time steps for each of the 3 predictors.
For this analysis, we only look at the 2018 growing season. Then, we randomly sample 600 pixels
throughout our defined grids and gather the 256x256 pixel grid around it as a single image. In total,
we have 12,600 images for training, validation and test. For developing the model, we allocate 8400
to training (14 zones), 2400 to validation (4 zones), and 1800 to test (3 zones). Each image is fully
labeled at the pixel level.

Our labels come from the Cropland Data Layer, a product maintained by the US Department of
Agriculture that segments the country into 30 meter labeled pixels including labels for all major crop
and land cover types (8). These labels, though, have 255 unique values, which for the context of our
problem would complicate model building. Instead, we aggregate into 12 classes based on the 11
most common land cover types in our study region and a class for ‘other’. The classes and relative
frequencies are listed in Table 5.

4 Methods

As mentioned above, we seek to fully segment images. One of the most popular architectures for
such a task is the UNet model. The UNet, first proposed by Ronneberger et al. (3), works via
repeated convolutions and pooling layers along a ’contraction’ path to capture context and signal
in the image, then passes that data along an ’expansion’ path which allows for the final output
to be the same dimensions as the input. The UNet approach is particularly appropriate for this
application because we have both a limited number of bands (3) per image and a limited number
of time steps. We leverage the capacity of the UNet to develop complex context in the contraction
path (as the number of filters increase by powers of 2 each block), while still effectively outputting
fully-segmented images. On the other hand, the UNet does not explicitly make use of the temporal
signal (though it can implicitly do so with the inclusion of image bands retrieved from multiple time
points). Given that the changes in land cover, as crops begin their growth, might contain valuable
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signal, a second approach proposed by Shi et al. (2015) (9) is implemented to combine both spatial
and temporal processing via a convolution LSTM network (ConvLSTM). We experiment with both
of these frameworks, comparing the preferred implementations on a validation set, before providing a
final estimate of generalization error on the held-out test set for the chosen model.

Specifically, we choose a UNet model with 10 ’blocks’ that are split into two main paths: the
“contraction path” (blocks 1-5), in which the input 256 x 256 x 9 (HxWxC) image is down-sampled
using convolutions and pooling 5 times to an 8 x 8 x 1024 shape, then the “expansion path” (layer
blocks 6-10), in which the image is up-sampled and combined with the corresponding contraction
path image to recover the original image dimensions (256 x 256) and predict pixel labels (Figure 1).
For our loss function, we choose to employ cross-entropy loss after softmax activation on the final
layer.

Figure 1: Final UNet architecture.

For the ConvLSTM approach, we stack several ConvLSTM layers, followed by 3D or 2D convolutions
to output a 2D segmented image. The ConvLSTM layer is of a similar nature to a typical LSTM, but
with 2D matrices representing pixel values of the bands instead of a 1D vector of values as inputs,
outputs, and hidden states. We make use of Tensorflow’s implementation of said structure, which
is based on the code from the original paper. We tune the number of layers and filters as described
below. Unfortunately, ConvLSTM layers are quite computationally expensive, limiting the number
of filters per layer. Inspired by Shi et al (9), who introduced the approach, we essentially use the
ConvLSTM layers to ’encode’ signal and context from the images, and ’decode’ using the subsequent
convolutional layers.

5 Experiments and Results

Our initial basic UNet model, labeled as "M1" in Table 5, utilizes only convolutional and max-pooling
layers in the contraction and expansion paths. We evaluate the performance of the model over 20
epochs of training with the full dataset. A relatively small mini-batch size of 16 is chosen since each
sample image in the training set of 8,400 images and development set of 2,400 images contains a large
number of pixel labels (256 x 256 = 65,536). The baseline model performs with 76.27% accuracy on
the training data and 67.35% on the validation data, indicating potential overfitting of the training data.

In order to improve upon the baseline UNet performance, we iteratively introduce new components
or change existing components of the baseline architecture. For the following set of experiments, we
compare the training and validation performance of the baseline model to that of iterations on the
model over 20 epochs:

• Change optimization algorithm. After changing the optimizer from stochastic gradient
descent (SGD) to Adam, training accuracy improved by 5.3%. We started with SGD but the
learning curves had shown drastic oscillation over within 10 to 15 epochs. Consequently,
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we decided to experimented on Adam expecting the momentum factor could better regulate
the gradient descend progress.

• Introduce learning rate decay. While the Adam optimization algorithm already has a
effect of learning rate decay with each iteration, we additionally apply the Keras function
ReduceLROnPlateau with a patience factor of 5. This function reduces the optimization
learning rate by a factor of 0.2 when the previous 5 epochs show no improvement. This
showed to increase accuracy by an additional 4.2%.

• Regularize using dropout. The UNet architecture in M2 is modified with two different
Dropout schemes in order to cut down high variance: one where the Dropout layer is
implemented before MaxPooling in Blocks 4 and 5 of the contraction path, modeled after
(19) (M4); and one where Dropout layers are implemented after MaxPooling in all blocks,
modeled after (20) (M5). Using a dropout rate of p=0.5, it was found the second Dropout
scheme resulted in a greater regularization effect.

• Tuning the dropout hyperparameter. Using the Dropout scheme in M5, the model was
tested at three values of p: 0.1, 0.5, and 0.8. The highest dropout rate of p=0.8 resulted
in the greatest improvement in training accuracy (by 7.42%) and in validation accuracy
(by 12.02%) compared to M2. Besides, it also provided the best performance on handling
overfitting.

• Tuning the learning rate hyperparameter. The model in M6 and M7 combines the previous
modifications of using Adam optimization, learning rate decay, and Dropout with p=0.8;
the difference between them is the learning rate parameter in Adam. We find that higher
training and validation accuracy is achieved using the larger initial learning rate parameter
of α=0.001, as this likely prevents the optimization from premature convergence when also
implementing learning rate decay to ensure convergence at an optimum.

Table 5 summarizes the results of the experiments, using training accuracy and validation accuracy
as performance metrics.

Table 1: Model iterations and final accuracy over 20 epochs.

Iter. No. Modification Training Accuracy Validation Accuracy
M1 Baseline UNet 76.27% 67.35%
M2 Change optimizer from SGD to Adam 81.62% 67.39%
M3 M2 + Introduce learning rate decay 85.83% 69.54%
M4 M2 + Dropout (p=0.5) in Blocks 4 and 5 before MaxPool 82.66% 66.94%
M5 M2 + Dropout (p=0.8) in all blocks after MaxPool 83.50% 76.06%
M6 M2 + M3 + M5 + Learning rate = 0.001 82.36% 78.46%
M7 M2 + M3 + M5 + Learning rate = 0.0001 80.77% 75.80%

We do not perform significant iteration on the ConvLSTM model, limited by the computational
expense (more than 2 fully-convolutional CLSTM layers overloaded the GPU). The two main
methods were comparing 3D convolutions on the output sequence from CLSTM layers versus 2D
convolutions using the output final state of the CLSTM layers. We found that using 2D convolutions
to output a segmented image performed better, and plateaued in performance much sooner than the
UNet implementations. The preferred model employed 2 layers of 2D convolutions on the final state
output from the 2 CLSTM layers. After 15 epochs, validation accuracy plateaued at 75%. F1 scores
from this implementation on the validation set is in Figure 3.

The final UNet model M6 is illustrated in Figure 1. By 30 epochs, the training accuracy plateaus
to a value of 82.36% and validation accuracy plateaus to a value of 78.46%, improving upon the
performance of M1 by 11.11% (Figure 4, see appendix). On the held-out 1,800 test images, the
test accuracy is 74.83% and the average F1 score across all classes is 0.75. This result suggests that
the modifications chosen from the experiments have reduced the variance in the performance of the
model, such that the discrepancy between the training and validation performance of the model is
small. Moreover, the consistency between the test accuracy and the training/validation accuracy
further indicates that the model is not overfitting the training data.

It is observable on the confusion matrix (Figure 2) that the final model made considerable errors in
predicting a proportion of the crop types, such as Alfalfa and Winter Wheat. We believe the errors
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were made for two reasons. Firstly, and most importantly, our data set is too skewed (Figure 3)
for the model to learn the patterns of the minor classes. Secondly, a crop type could be classified
incorrectly to another type because of similar bandwidth value or confusions brought up by particular
agricultural activities. For example, as shown in Figure 5 (see appendix), the bandwidth value of
alfalfa does not increase over time, as we might expect from a crop, because farmers periodically
harvest it to feed livestock.

Finally, we recognize that the model does not quite reach the levels of performance demonstrated
elsewhere in the literature (11; 10), which achieve average F1 scores greater than 0.8 and up to 0.91
for similar style task in Germany, or accuracy into the 90s in Eastern Europe (15). However, given
the limitations imposed by our task (short temporal sequence, no spectral data) we feel this is a
reasonable level of performance, with great promise for expansion to better data sets and new regions.

Figure 2: Confusion matrix of pre-
ferred UNet specification on the
held-out test set.

Figure 3: Frequency of crop types, and F1
scores of preferred UNet and ConvLSTM ap-
proach

6 Conclusion/Future Work

In conclusion, we find that deep learning frameworks are able to segment land cover types in a
high-intensity agricultural region adequately by midway through the growing season. The preferred
model, a UNet architecture, achieves an average F1 score of 0.75, while a ConvLSTM approach
performs similarly, but with much greater computational expense. We find ourselves limited by
infrequent temporal resolution and skewed classes.

Future work could fill in the need for additional, higher temporal resolution data as well as better
addressing the skewed class problem. As Sentinel-1 continues to ramp up their program, data
will be available at up to 6-day intervals, compared to the 12-24 day returns currently available.
This will greatly increase the amount of data available for an early season classification task, with
great potential for improvement. Given the promise shown by ConvLSTM models with just 3 time
steps, we expect they might be highly relevant in this future context. Further experimentation with
encoder/decoder models in this vein leveraging spatial and temporal variation seem promising.

7 Contributions

W. Dado: gathered, exported, and assembled the data set using Google Earth Engine and
appropriate data parsing functions in Python. Implemented the ConvLSTM-based models
and performed experimentation with them. R. Pan: implemented interactions on the UNet
model by adding new components and tuning hyper-parameters. Evaluated, demonstrated, and
interpreted results produced by the models. J. Zou: tested various UNet architectures from literature,
compared performance of model iterations, and tuned hyperparameters. All contributed to the writeup.
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Appendix

Figure 4: Comparison of M1 (baseline) and M6 (final model) using training and validation accuracy
over 20 epochs of training.

Figure 5: Averaged backscatter values for the two polarizations for 3 classes. We observe that alfalfa
does not exhibit the increasing pattern we might expect from crops, perhaps explaining some of why
it is poorly identified by the model.
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