
Uncertainty Quantification of a Classification Network for Contact-Rich
Manipulation

Peter Zachares , Negin Heravi

Fig. 1. Image of our Mujoco simulation

I. PROJECT CATEGORY

Others- Robotics

II. PROBLEM STATEMENT

This project is an extension of a project that is being
developed in the Interactive Perception and Robotic Learning
lab at Stanford. Most robots in industry today can only
accomplish tasks with little to no uncertainty. The aim of the
original project is to develop a method which extends the set
of tasks which robots can accomplish using deep learning
methods to include tasks with certain forms of options
uncertainty. An example of options uncertainty is selecting
a tool for a task. For example, when you have to change
your tire and have to choose between a set of hex wrenches.
The options uncertainty is over which tool to select. For this
project, we will be using a 7 DOF robotic arm in simulation
to accomplish the task of peg insertion with multiple hole
options for the robot to choose from. The robot will need
to interact with the peg holes and quantify its uncertainty
for each peg hole over the hole’s shape using only force and
position data. For our CS230 project we looked into different
training objectives and network architectures for quantifying
uncertainty of a discrete probability distribution. This should
improve the performance of the method we are developing
for the original research project.

III. CHALLENGE

There are a number of challenges we face in our project.
The most common approach for quantifying uncertainty of

P. Zachares and N. Heravi are with the Department of
Mechanical Engineering, Stanford University, Stanford, CA
94305.[zachares,nheravi]@staford.edu

discrete probability distributions is to train a network using
cross entropy loss. This is a maximum likelihood training
objective which is known to learn overly conservative uncer-
tainty estimates. In addition, neural networks tend to overfit
to their training set, in which case even if the network learned
an accurate uncertainty estimate for the training set, it would
be conservative for the validation set where performance of
the network is worse. These problems are compounded by
the issue that in robotics, data collection is expensive. So
datasets are relatively small in comparison with the set of
inputs they may see in the wild. So our challenge is how can
we accurately quantify uncertainty in the task of peg shape
classification using sensor traces with a small data set.

IV. DATASET

We collected the data set for this project in simulation in
Mujoco. A picture of our simulation environment is shown
in figure 1. This data set consists of 4500 recorded trajec-
tories of a robotic arm interacting with three different peg
hole shapes: rectangular, square, and cross. Each trajectory
contains data collected over a period of 7.5 seconds. This
corresponds to 75 steps in our robot’s environment since
the control frequency of the robotic arm is set to 10 Hz.
During a trajectory, the end-effector of the robotic arm slides
over one peg hole while traversing one of the diameters of
a circle centered at the hole’s center with a radius of 4 cm.
The circle’s radius is chosen such that it is large enough to
contain the hole. This procedure was repeated 500 times for
every combination of pegs and holes (3x3) resulting in the
4500 trajectories in our data set. Each step in the trajectory
contains the following sensory information about the end-
effector: (i) 6-d pose (ii) linear velocity (iii) angular velocity
(iv) a binary value indicating the status of contact with the
surface (v) force/torque readings (with a dimension of 50
since the force/torque sensor has a higher frequency (500Hz)
than the robotic arm controller (10Hz)).

V. LITERATURE REVIEW

Several researchers have previously worked on strategies
for quantifying model uncertainty [1, 2, 3]. For example,
there are approaches that represent model uncertainty by
proposing a theoretical framework that casts dropout as a
Bayesian inference approximation in deep Gaussian pro-
cesses [4]. Gal and Ghahramani [4] have shown that by
simply implementing drop out layers in a network and using
them both in training and testing, one can approximate
uncertainty.



Furthermore, Kendall and Gal [5] have looked into the
comparative importance of modeling two different type of
uncertainties that are seen in Bayesian deep learning models.
These uncertainties are called: (i) epistemic uncertainties
which are model dependant and (ii) aleatoric uncertainties
which capture the observation noise.

Lastly , Ovadia et al. [6] provide a large scale empirical
comparison between different state of the art Bayesian and
non-Bayesian methods on their performance for uncertainty
quantification. This study can serve as a great tool for us
to choose between different existing methods that we can
investigate for the final report.

In our project, we compared the technique of using Monte
Carlo dropout (MC dropout) originally proposed in [4] and of
using an ensemble of models described in [6] with a baseline
architecture to evaluate their effectiveness at quantifying
uncertainty for our classification task. Both techniques have
similar limitations. To quantify model uncertainty both use
a Monte Carlo estimate of the integral over the weights of
a network’s architecture. In MC dropout, each weight in a
network can randomly take on its learned value or 0 during
a forward pass. This approximates the space of models that
it is possible to learn, because the model changes from one
forward pass to another. The limitation of this model is that
the space of each weight can only take on two values. So MC
dropout cannot describe the large variation in learned weights
that it is possible to learn when training a classifier. An
ensemble of models also uses a Monte Carlo estimate of the
integral over the weights of a network’s architecture. In this
case, the models are fixed after the learning process finishes
and so the variation in models is based on the variation in
performance between the different models in the ensemble.
Consequently, a very large ensemble of models must be
learned to estimate model uncertainty accurately which is
often too computationally expensive to be practical. So the
limitation of both techniques is that they only express a small
variation in the space of learned models that is possible for
a specific learning task.

VI. METHOD

For this project we are learning a classifier network which
takes in a time series of force / position readings and outputs
a multinomial distribution over whether a peg fits the hole
it is exploring. The output of the classifier should not only
indicate whether the peg fits but also quantify the likelihood
of its prediction.

A. Architecture

Figure VI shows the architecture that enables the clas-
sification of fit as well as the prediction likelihood. This
architecture takes as input the change in position and contact
information of the end-effector over a full trajectory (74 time
steps x 13 sensor readings) as well as the corresponding
force/torque readings of the sensor (74 time steps x 50
(multiple readings during 1 step) x 6 (3:Force + 3:Torque
readings)). The output of this network is a classification

vector that indicates the probability of fit between the robot’s
peg and the hole being explored.

The architecture encodes the position/contact information
into a 74x80 dimensional matrix using a 3 layer ResNet
[7] network where each layer has 80 neurons. Force/torque
sensor readings are first processed using a fast Fourier
transform which is then processed using a force encoder
consisting of a 2-d convolutional neural network. The output
of the force encoder is a matrix of 74x48 dimensions.

The output of these two encoders are concatenated and
inputted into a transformer decoder network [8] which com-
pares the trajectory to itself. The choice of a transformer
was driven by its optimal performance on the validation set
compared to an LSTM network as well as an LSTM with
attention network we had explored in our previous work.
The output of the transformer network has a dimension of
74x128 where the first dimension corresponds to time steps.
To reduce the time dimension, we take the maximum of each
row to create a vector of 128 dimensions.

Lastly, we feed this vector into our distribution parameter
estimation module which has a 4 layer ResNet architecture
where each layer has 32 neurons, except for the last layer
which has 2 neurons. A Softmax function is applied to the
output of this network to obtain probability estimates. The
choice of a ResNet architecture as opposed to fully connected
layers was inspired by previous studies that have shown
networks with skip connections are easier to optimize [7].

All models described in the results section where trained
using the same loss function. We trained our classification
networks using cross entropy loss, described in (1) below.
In (1) f(·) is the mapping from sensor inputs to logits of
the multinomial distribution over fit. If the outputs of f(·)
are put through a softmax function, then the outputs of the
softmax function will be probability masses of a multinomial
distribution. In (1), yi is the index of the logit of the correct
classification for datapoint xi and n is the number of classes.
For our project n is 2, because a peg can only fit or not fit
into a hole. Usually binary cross-entropy loss is used to train
networks with only two possible classes, but in our case we
chose to use cross entropy loss, which meant modelling the
multinomial distribution over fit using two parameters instead
of one.

Loss = − log(
exp(fyi

(xi))∑n−1
j=0 exp(fj(xi))

) (1)

Our baseline model used the probabilities outputted by
our trained classification model after passing it through a
softmax function to quantify uncertainty. In addition, we
tested three different uncertainty quantification techniques
which all estimated model uncertainty. The first technique
proposed in [4] is called MC dropout. For MC dropout,
a model is trained with dropout layers before its fully
connected layers and after its convolution layers. Then at
test time, the dropout layers are maintained and multiple
forward passes are performed to record sample classification
from different possible models. The second technique we



Figure 2: Schematic of Classification Network Architecture

explored was an ensemble method described in [6]. At test
time, an input is used to make a forward pass through each
model in the ensemble to record sample classifications from
different possible models. The third technique we explored
was combining MC dropout with an ensemble of models,
because training a large ensemble of models is very compu-
tationally expensive and by adding dropout to a network it
is possible to take multiple samples from the same network
(which should improve the uncertainty quantification). So
by combining the two techniques, we hoped to gain some
of the effectiveness the ensemble model and the ability to
record a large number of samples provided by the dropout
method. For all the techniques involving an ensemble, we
trained three separate models. For all techniques involving
dropout, we used a dropout rate of 0.2. At test time, to
quantify uncertainty for each datapoint in our batch we took
a total of 180 samples. A sample was an estimate of the class
label for that data point given the sensory input. Then the
uncertainty estimate was calculated by using the following
equation.

pi =
ni

ntotal
(2)

In this equation, pi is the probability of class i, ni is the
number of samples classifying an input as class i and ntotal is
the total number of samples recorded. This is the maximum
likelihood estimation of a multinomial distribution based on
samples.

VII. RESULTS

For this project, two of the three metrics we use are based
on average entropy ratios. A good uncertainty quantification
should be more uncertain on average of unseen data points
than points on which it was trained. So a high average
entropy ratio between points in the validation set and training
set could indicate a good uncertainty qualification (validation
average divided by training average). A good uncertainty
qualification should also be less certain of points that are
incorrectly classified than points that are correctly classified.
As such, the ratio of average entropy between incorrectly
classified points and correctly classified points in the valida-
tion set should be high (incorrect average divided by correct
average). Our last performance metric is based on entropy
and an assumptions about the ground truth uncertainty these

techniques are trying to estimate. This metric is called en-
tropy difference range in the results table. This metric is cal-
culated by first calculating the entropy of every uncertainty
quantification in a batch, then sorting these entropies based
on magnitude. The difference is taken between consecutive
points in the sorted list. The range of the resulting vector is
an indication of the distribution of entropies in the batch. If
there is a large range in values this indicates that the entropies
are concentrated around certain values, but if there is a
small value, this indicates the entropies are more uniformly
spread out. We know our baseline architecture learns an
overly certain uncertainty quantification and so its entropy
distributions per batch are more clustered. If we assume that
the ground truth uncertainty estimate is more spread out than
what can be learned by our baseline architecture, the entropy
difference range metric should indicate which technique is
able to estimate uncertainty best. For this metric, smaller
values indicate better performance.

All three uncertainty techniques outperformed our base-
line model in terms of average entropy ratio between the
validation and training set. This demonstrates that these tech-
niques produce estimates which are more uncertain of points
outside the training set than the baseline model. However,
only the baseline with ensemble technique outperformed
the baseline model in terms of average entropy ratio of
incorrectly classified to classified points. This suggests that
using MC dropout increases the certainty of the estimate
for incorrectly classified points, possibly when it should not
do so. The best performing model on our last metric of
entropy range difference was the baseline with an ensemble
of models and using MC dropout. This demonstrates that
these techniques combined can estimate the greatest range
of uncertainty quantifications, probably because the space of
possible learned models that is described by combining these
two techniques is greater than using one of them individually.
The entropy difference range metric is also notable because
of the decrease in value as more model uncertainty estimation
techniques are used. In this project, the baseline model had
the highest range.

These trained models were also evaluated on a downstream
robotic control task where the baseline model performed
very poorly. The baseline model with an ensemble and the
baseline model using MC dropout did not perform much
better and it was only the baseline model which used an



Average Entropy Ratio
(Val / Train)

Average Entropy Ratio
(Incorrectly Classified / Correctly Classified)

Entropy Difference
Range (Val)

Baseline 1.082 2.580 0.0953
Baseline with
Ensemble 1.5113 3.314 0.0637

Baseline with
MC Dropout 1.126 1.581 0.0645

Baseline with Ensemble
+ MC Dropout 1.155 1.595 0.0555

Table 1: Performance of Models on Project Metrics

ensemble of models and MC dropout which performed
reasonably well on the task. This demonstrates that it is hard
to find a metric for evaluating an uncertainty quantification
that is not based on a downstream task performance. In our
case, the entropy difference range seems to be the most useful
indicator for determining which of the models will perform
best in the overarching research project that inspired this
class project.

VIII. CONTRIBUTIONS

For this project, Peter developed the architecture for the
classifier models and Negin implemented the uncertainty
quantification techniques as well as the metrics used to
evaluate their performance.

REFERENCES

[1] J. Gast and S. Roth, “Lightweight probabilistic deep
networks,” 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 3369–3378, 2018.

[2] M. Sensoy, M. Kandemir, and L. M. Kaplan, “Evidential
deep learning to quantify classification uncertainty,”
CoRR, vol. abs/1806.01768, 2018. [Online]. Available:
http://arxiv.org/abs/1806.01768

[3] A. Loquercio, M. Segù, and D. Scaramuzza, “A general
framework for uncertainty estimation in deep learning,”
IEEE Robotics and Automation Letters, vol. 5, pp. 3153–
3160, 2019.

[4] Y. Gal and Z. Ghahramani, “Dropout as a bayesian
approximation: Representing model uncertainty in deep
learning,” in ICML, 2016.

[5] A. Kendall and Y. Gal, “What uncertainties do we need
in bayesian deep learning for computer vision?” in NIPS,
2017.

[6] Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley,
S. Nowozin, J. V. Dillon, B. Lakshminarayanan, and
J. Snoek, “Can you trust your model’s uncertainty?
evaluating predictive uncertainty under dataset shift,”
ArXiv, vol. abs/1906.02530, 2019.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep
residual learning for image recognition,” CoRR, vol.
abs/1512.03385, 2015. [Online]. Available: http://arxiv.
org/abs/1512.03385

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin, “Attention is all you need,” CoRR,
vol. abs/1706.03762, 2017. [Online]. Available:
http://arxiv.org/abs/1706.03762

http://arxiv.org/abs/1806.01768
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1706.03762

	Project Category
	Problem Statement
	Challenge
	Dataset
	Literature Review
	Method
	Architecture

	Results
	Contributions

