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Abstract

We have designed and characterized a convolutional neural network to classify chest
X-rays as COVID positive or negative. Our final model, informed by CheXNet, makes
use of a DenseNet-121 architecture 1. We compare the performance of a model that is not
pre-trained and a model that applies transfer learning to the CheXNet learned weights.
Our transfer learning model achieved a train/test/val accuracy of 99.8/90.0/86.2 while the
fully trained model achieved an accuracy of 99.1/86.3/86.2. Further analysis of recall,
precision, f1-score, and area under receiver-operator curve metrics for these two models
are presented later in this work.

1 Introduction

In the era of SARS-CoV-2 (COVID-19), rapid diagnosis of COVID-19 is critical to maximize patient
throughput in hospitals where real-time polymerase chain reaction (RT-PCR) based testing may be
limited. This project aims to use chest X-rays, an ubiquitous and inexpensive diagnostic tool, to
distinguish SARS-CoV-2 infected lungs from other pneumonias and healthy lungs in order to better
inform caretakers. Our model accepts chest X-rays and classifies them as COVID positive or negative.

1.1 Related Work

There is a wealth of previous work on automated classification of chest X-rays or CT images to
identify tumors, score segmentation, or even identify different diseases2. Of specific note to our
project, CheXNet exemplifies the current state-of-the-art image classification for X-ray images1,
which implements an extremely deep convolutional neural network (CNN) to recognize low and
high level features of X-ray images and is able to diagnose patients based on the images as well as a
human radiologist3,4. With the emergence of COVID-19, several researchers have begun applying
neural networks, including the Inception transfer learning model 5 and other deep convolutional
neural network models such as VGG19 and Dense Convolutional Network (DenseNet) models 6.

2 Dataset and Features

Our datasets were pulled from open source datasets and designed to achieve an 80-10-10 split between
training, dev, and test sets, with dev and test sets having a 50-50 split of COVID and non-COVID7, 8, 9.
The final breakdown of datasets is described in Table 1. Some images are from longitudinal trails
depicting the progression of COVID-19, and in many cases, early images are marked as negative
which introduces some user bias into the dataset. Additionally, many X-rays are off-centered, rotated
slightly, have radiologist markings, or are even in the supline plane which introduces significant
image noise which could impact training. Finally, the imbalance of the dataset poses a major issue, as
the model will generally be able to reduce cost by labeling all images as negative.
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Dataset COVID Non-COVID
Train 170 871
Dev 65 65
Test 65 65
Total 300 1001

Table 1: Dataset Distribution

3 Methods

We evaluated the performance of several different architectures on this task, including a baseline
CNN, ResNet18, and DenseNet-121. Performance was evaluated by generating confusion matrices,
calculating metrics (such as recall, precision, specificity, and accuracy), examining intermediate layer
activations, and comparing heat maps of specific classified images. Much of our model design was
intended to mitigate the prevalence of non-COVID images and the scarcity of positive examples in
our training set that led to significant over-fitting in early models. We will go over some our early
approaches and end with our final approach which was inspired by CheXNet.

3.1 Baseline CNN

Our first approach was with a baseline model (See Appendix A), which was built from a Keras binary
CNN classifier tutorial and modified to classify our dataset 10. Images were normalized and resized
to 640x640 before being passed as input. The CNN was trained with an Adam optimizer where
the initial α = 0.001, β1 = 0.9, β2 = 0.999 with minibatches of 32 images and ran for 15 epochs.
Baseline training accuracy was 99% and test accuracy reached 70%. The high accuracy on the
training set indicated some type of over-fitting or that the impact of data imbalance was dominating.
In order to address this, we next explored employing regularization, manual weighting, and data
up-sampling and generated confusion matrices for different conditions to evaluate the success of
these tactics.

We primarily trained 4 different models with varying types of modifications made to the data and
model itself. Out goal was to identify how these modifications would impact the models’ performance
and address the imbalance issue present in the data-set. Each model was designed as follows:

• Model 1: Original baseline model configured with 83/17 split (Non-COVID to COVID) for
the training set while the test set was split 50/50.

• Model 2: Configured with the same data split configuration, but dropout layers were integrated
after each CONV-POOL pair as well as a batch normalization (BN) layer at the input to reduce
image variance.

• Model 3: Inherited droupout and BN from Model 2 and integrated two additional features.
First, class weighting was manually specified to be 1:6.12 (Non-COVID to COVID), the inverse
of the ratio of COVID to Non-COVID examples in the training set.

• Model 4: Inherited the structure of Model 3, but used an up-sampled training set with a 50:50
split of COVID:Non-COVID images generated with random image duplication.

Over the four models we computed the precision, recall, confusion matrix results, and accuracy. The
exact results can be found in Appendix B. However, the main takeaway was that Models 3 and 4
demonstrated reduction in over-fitting and increased generalization from the training set to the test/val
datasets. However, the in the best case scenario our models had an accuracy performance ceiling of
70% and recall below 50%. This is not desirable in clinical settings and thus we set off in efforts of
exploring a more sophisticated model.

3.2 ResNet-18

Our first attempt to increase network complexity was to make use of the ResNet-18 architecture 11.
As in the initial CNN, images were normalized and sized to 640x640 and mini-batch size was 32.
SGD optimization was used with a learning rate of 0.001 and momentum of 0.9. After 25 training
epochs, the validation accuracy reached 65%. We decided not to pursue this approach as we believed
that we would achieve better success using DenseNet-121, a more complex architecture that has been
demonstrated to successfully classify chest X-rays in CheXNet1.
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3.3 DenseNet-121

Our final model was settled on by manipulating the CheXNet DenseNet121 structure which is shown
in Figure 1 12, 1.

Figure 1: General structure of a the DenseNet121 with a sigmoid binary classifier layer attached at
the end after the last Dense fully connected layer.

The weights from CheXNet were imported from a saved 14-class model state and then loaded into
TorchVision’s DenseNet121 template13. The 14-label classifier layer was stripped and replaced with
a Sigmoid layer to convert the multi-classifier structure into a binary classifier. We tested 11 different
models where the numbers of frozen layers (ie. un-trainable layers) were varied to see what effects it
had on performance and training time 1. Refer to Appendix C for a general work-flow overview. On
each iteration, the DenseNet model would be recompiled with a new frozen layer domain. The model
was then trained with mini-batches of 16 320x320 size images for 25 epochs. Additionally, a class
weighting scheme of 6.12:1 (positive:negative) was applied to curtail to influence of an imbalanced
dataset.

4 Results

The DenseNet121’s performance for each model was analyzed extensively. Metrics were computed
for each class using the sklearn open-source library for the train, test, and val data sets (See Appendix
D for all reported metrics for each of the 11 models). Figure 2 depicts the computed precision, recall,
f1-score, area under receiver-operator curve (AUROC), and accuracy assuming the COVID label as
the positive class for each of the data sets. It is important to note that the frozen layers start at the
beginning of the neural network and work forward into deeper layers.

After computing performance benchmarks for each model, we looked at some select activation
heatmaps from the final fully connected layer. The model we chose for heatmap generation had
around 311 trainable layers while the first 51 layers were frozen in the transfer learning model
adopted from CheXNet. This model version, as well as the completely retrained model (362 trainable
layers), showed the highest performance while demonstrating good generalization and immunity to
over-fitting. In Figures 3 and 4 depict different heatmaps for two correctly labeled COVID cases and
two correctly labeled Non-COVID cases. Appendix E shows some select activation outputs from the
Dense Layers in the DenseNet for Models 10 and 11 on a COVID positive image.

Out of the models we explored, the modified pretrained CheXNet model demonstrated superior
performance. Based on the performance metrics, the final two models of the modified CheXNet
models performed the best. Model 10 has 311 trainable layers while Model 11 is essentially just the
DenseNet121 template completely retrained. Table 2 compares the metrics for both of these models.

The results show that there is greater agreement/generalization between datasets and a better balance
of importance to precision and recall for Model 11. Model 10 demonstrates excellent performance,
but there is some deviation between accuracy and a bit of bias towards precision among the datasets.
Ideally, the favorable model is one that gives equal balance to both precision and recall as it is
important to identify COVID positive images and not label negative cases as positive. Although Table
2 reports fantastic results, the heatmaps pose an interesting problem.
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Figure 2: Metric results for Train (blue), Test (red), and Validation (black) sets against the number of
trainable layers.

Figure 3: Example heatmap overlays for two COVID positive and two Non-COVID examples. The
original image and its heatmap are shown individually and then combined to depict areas of interest.

5 Discussion

As observed in the Results section, Models 10 and 11 perform the best with slight difference between
them. One notable characteristic of Model 10 is that it took 5 minutes less to train than Model 11.
This might seem insignificant, but when scaling up to larger datasets, which should be available as
COVID progresses, applying a transfer learning model where layers do not have to be trained does
cut down on the train time. Decreased train time increases the potential for more model prototypes in
a shorter amount of time thus increasing the community’s ability to identity the absolute superior
method of detecting COVID in X-ray images.

On the other hand, Model 11 has extremely tight deviations between test sets when considering
recall, precision, and accuracy. This indicates that retraining the entire DenseNet does provide some
leverage. One explanation might be attributed to the space of examples that the pretrained CheXNet
is optimized for. Although it seems that COVID images would be inside the set space that CheXNet
operates in, the space of discerning COVID positive lung infection versus other lung infection could
be a set space that is just slightly outside of CheXNet’s. This could explain the slight increase
in generalization and overall performance when retraining the entire DenseNet. It does raise the
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Model 10 Model 11
Train 99.8 99.1
Test 90.0 86.3Accuracy
Val 86.2 86.2

Train 98.8 95.0
Test 93.3 87.3Precision
Val 91.2 86.3

Train 100 100
Test 86.2 84.6Recall
Val 80.0 85.6

Train 99.4 97.4
Test 89.6 85.6F1-Score
Val 85.2 85.9

Train 99.9 99.9
Test 94.5 93.9AUROC
Val 90.1 89.7

Table 1: Table 2: Comparison of results between the final two modified CheXNet models.

question as to what set space does the COVID image dataset reside in when comparing it to other
lung infection datasets.

Another discussion worth having is: what do the heatmaps show? Many researchers not only display
the numerical results of their neural network, but also present heatmaps that reflect what the neural
network is "looking at". Looking back at our heatmaps, there does not seem to be any patterns
of focus in the heatmaps when comparing negative vs positive examples. This observation was
consistent over all datasets. While there is some activation near the opaque tracts where the lung
infection resides, the network seems to heavily activate on the high intensity areas of the image like
fatty tissue. This raises the question as to what unique features the network is exactly identifying
when it labels a positive example correctly. The odd nature of the heatmaps could indicate that maybe
there are very subtle features present the network is picking up on and visualising them requires more
data processing of the activation maps in general.

This work shows promise for the use of neural nets in the identification of COVID positive patients.
One of the greatest challenges we faced in this work was the scarcity of positive examples. Despite
our limited amount of data, we were pleased to see our classifier could perform quite well. As
additional data is made available, this model can be better evaluated in regard to its clinical usability
and model architecture and hyperparameters can be better designed.

6 Contributions

All group members contributed to discussions about project direction and project reports. Action
items in implementation were discussed and split between group members as follows.

All of our code can be found at our github repo 14. All images used and CheXNet model code can be
found at their respective github repos 8,13.

• Vlad: Action item manager, metric architecture implementation, model building/modification
• Alyssa: Document organizer, heatmap and activation map creation, model build-

ing/modification
• Nick: Figure development, AWS management, CheXNet importing, model build-

ing/modification
A special thanks to our project TA, Shubhang Desai, as well as Pranav Rajpurkar for all of
their help and insightful suggestions as we tackled this project.
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7 Appendix

7.1 Appendix A

Figure 4: Baseline CNN Architecture: This architecture employs 3 2D convolution-max pooling
blocks, a flattening layer, and two dense layers before the output.

7.2 Appendix B

Figure 5: Generated confusion matrices for Models 1-4: While regularization, up-weighting, and
up-sampling reduced overfitting, performance limits suggested that a more complex architecture
would be appropriate.
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7.3 Appendix C

Figure 6: General work flow when training various DenseNet121 model flavors.
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7.4 Appendix D

Figure 7: Complete table of computed metrics for the CheXNet model modification experiment.
Weighted average recall, precision, and f1-scores are provided at the end of each dataset for an
average metric result.
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7.5 Appendix E

Figure 8: Selected activation maps from a few Dense Layer output blocks from Models 10 and 11
starting from the initial layers and moving up (left to right).
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