
Deep Learning Applications for Computer-Aided
Design of Directed Evolution Libraries

Anthony J. Agbay
Department of Bioengineering

Stanford University
aagbay@stanford.edu

Abstract

In the past decades, the advancement in industrial enzymes, biological therapeutics,
and biologic-based "green" technologies have been driven by advances in protein
engineering. Specifically, the development of directed evolution techniques have
enabled scientists to generate genetic diversity to iteratively test randomized li-
braries of variants to generate optimized enzymes for specific functions. However,
throughput of directed evolution is limited due to the potential number number
of variants in a randomized library. Training neural network models that utilize
the growing number of datasets from deep mutational scanning experiments that
characterize entire mutational landscapes and new computational representations
of protein properties provides a unique opportunity to significantly improve the
efficiency and throughput of directed evolution , alleviating a major bottleneck and
cost in many research and development projects.

1 Introduction

From reducing manufacturing waste and developing green energy alternatives, to biocatalytic cascades,
designing new therapeutics, and developing inducible protein switches, engineering proteins enable
enormous opportunities across a diverse array of fields. (Huffman et al., 2019; Nimrod et al., 2018;
Langan et al., 2019; Smith et al., 2012) Directed evolution, or utilizing evolutionary principles
to guide iterative mutations to a protein, has been an essential method for driving many protein
engineering projects. However, the search space accessible through directed evolution is limited
by physical constraints of screening methods, the iterative buildup of mutations, and other factors.
(Xiao et al., 2015) The rise of methods, such as deep mutational scanning (DMS), is enabling the
application of new computational approaches to directed evolution by addressing long-standing
deficiencies in standardized and labeled data sets quantifying the effects of mutations. (Fowler and
Fields, 2014) By using these labeled DMS datasets augmented with protein biochemical properties
and microenvironment descriptions, we can train a three-class neural network classifier to predict if a
potential mutation is deleterious, neutral, or beneficial. These predictions can then be used to guide
the development of effective directed evolution libraries.

2 Related work

There have been several different computational approaches for utilizing DMS data to predict mutation
effect sizes. Gray et al. (whose paper this dataset is sourced from) utilized stochastic gradient descent
and a random forest algorithm, termed Envision(Gray et al., 2018). Four other algorithms are standard
for this type of application. PolyPhen-2 uses a Naive Bayes classifier using various biophysical

CS230: Deep Learning, Spring 2020, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



properties to determine the effect category of a mutation. (Adzhubei et al., 2010) SIFT is also a
classification algorithm, but uses sequence-alignment scores to rank and classify mutations. (Ng and
Henikoff, 2001) EVmutation uses a probabilistic model based on an energy function to predict the
favorability of mutations. (Hopf et al., 2017) SNAP2, the closest approach to this project, is a binary
neural network classifier using a set of biochemical properties and sequence alignment. All of these
approaches attempt to capture a specific subset of protein characteristics, but have been limited by
the amount of data and the need to hand engineer more complex features.

3 Dataset and Features

The main dataset is a curated and standardized collection of DMS data used for training and evaluating
the Envision algorithm. (Gray et al., 2018) he authors filtered the data based on a series of selection
criteria described in the original paper and have standardized the effect size labels. In total, there
are 65,420 variants included in this dataset with 32 features. However, 6,522 of these variants have
predicted effect sizes due to gaps in the original DMS experiments. These predicted effect sizes
were generated using a similar model to the Envision algorithm but applied to each protein. As such,
these predicted variants will be excluded, leaving 58,898 variants split amongst 8 different proteins.
These data were further processed by filling mislabeled data, missing features, and generating one-hot
encodings for categorical features. A full description of the features can be found in the supplemental
information from the original paper.

Protein Count
TEM-1 25140
Kka2 20475
Uba1 1364

PSD95pdz3 1576
Pab1 856
hsp90 170

Table 1: Merged Dataset Counts

This DMS dataset was further augmented with a de-
scription of microenvironments around each muta-
tion. These microenvironments were generated using
the FEATURE algorithm in conjunction with DSSP.
(Halperin et al., 2008; Touw et al., 2015; Kabsch and
Sander, 1983) These algorithms generate a vectorized
representation of the microenvironments in a protein
by generating counts of different biochemical proper-
ties, such as presence of secondary structure elements,
specific residues, and charges, in a series of concentric
spheres around a single residue. A full description of
the merged features can be found in the original FEA-
TURE paper. (Halperin et al., 2008) The algorithm is built to determine these microenvironments at
the atomic level. To merge with the original datset, FEATURE vectors were combined at the residue
level prior to merging.

These algorithms were ran using the default parameters (6 shells, 1.25 Å widths), but five outer shells
were omitted due to overfitting issues. To generate these data, we used Uniprot and the Protein Data
Bank to retrieve the wild-type crystal structures for each protein of interest. (Berman et al., 2000; noa,
2019) All mutations are assumed to not result in major structural changes to the protein. Because
the crystal structures did not contain the all residues mutated in the original dataset, the dataset was
further filtered during this merging process (See Table 1). After merging, the final dataset contained
107 features, the majority of which come from the FEATURE encodings.

Overall, there are two limitations with the dataset. First, the distribution amongst each protein is
not balanced (See Table 1). This is unavoidable due to difficulties in obtaining crystal structures
and generating DMS data through an entire protein. The imbalance will cause variability in the
training and evaluation of the final algorithm, as the process is based on a leave-one-protein-out
(LOPO) approach (further described in the methods section). Second, there is a further imbalance
in the number of examples spread across the three labels. (See Figure 1). Similar to the problem
described above, this is unavoidable and is the expected. This created a significant challenge to
train an algorithm with strong performance (especially when trying to label "beneficial" mutations).
Attempts to address the class imbalances did not result in improved performence (See Methods
section).

2



Figure 1: Distribution of Labels per Protein (Prior to Upsampling)

4 Methods

All code used to process data and train/evaluate algorithms can be found at https://github.com/
anthony-agbay/cs230-project.

4.1 Data Processing

Because the original dataset contained continuous scaled effect labels, the data was processed to
generate three class labels: "Deleterious," "Beneficial," and "Neutral." The scaled effect label was
normalized to 1 in the original dataset, so we defined a hyperparamter, threshold offset (τ ), to
determine the range for each class:

Deleterious: < 1− τ

Beneficial: > 1 + τ

Neutral: 1− τ < X < 1 + τ

After the initial processing described in the above, an additional processing step to address the class
imbalance was attempted. Because deleterious samples outnumbered both the neutral and beneficial
samples, the neutral and beneficial classes were upsampled to match the number of deleterious
samples for each protein. In order to do this, we chose τ = 0.2 to capture an intermediate range of
netural mutations. This resulted in a final dataset consisting of almost 69,000 samples. Input features
were further standardized using the StandardScaler pipeline from scikit-learn prior to training any
models.

4.2 Baselines

4.2.1 Logistic Regression

Protein Accuracy Precision
TEM-1 .521 .386
Kka2 .492 .357

Table 2: Logistic Regression Models

First, a logistic regression baseline using the standard
implementation from ‘scikit-learn‘ was developed.

To train and evaluate this model, we implemented the
LOPO data split method mentioned in the previous sec-
tion. In a real world application, this algorithm should
be able to perform well on proteins that currently do
not have labeled DMS data accessible. As a result, the
traditional train/dev split would not reflect the expected

3

https://github.com/anthony-agbay/cs230-project
https://github.com/anthony-agbay/cs230-project


performance (as described in Milestone 1). In the LOPO model, samples from a single protein are
witheld as the final dev/test set and all remaining samples are used to train the model. Because of
this non-standard data split and the imbalanced distribution of samples per protein, there will be
variability in the performance based on which protein was selected to be used for the dev/test set.

4.2.2 Two-Layer Neural Network

Protein Accuracy Precision Recall
TEM-1 .413 .404 .413
Kka2 .435 .442 .435

Table 3: Two Layer NN Model

We also trained a two-layer neural network as an ad-
ditional baseline to our final model. This model con-
sisting of a single, fully connected hidden layer with
256 nodes and three-node softmax output layer using
the ‘scikit-learn‘ wrapper for the Keras library. This
baseline network was trained for 20 epochs with a batch
size of 64 (based on monitoring the loss over time). Ac-
curacy and precision were determined for TEM-1 and
Kka2 only because of continued imbalance problems for the other proteins despite upsampling. (See
Table 3.

4.3 Neural Network Model

Figure 2: Neural Network Architecture

To implement the final neural network model,
we utilized the Tensorflow and Keras libraries.
This neural network consists of L number of
fully connected hidden layers with a ReLU ac-
tivation function, each with N number of nodes,
where L and N are the two additional hyperpa-
rameters. These layers are subject to l2 nor-
malization followed by a dropout layer with a
frequency of 0.2. The final layer is a 3-node soft-
max output layer. Despite data scaling, normal-
ization for each node, and dropout, overfitting
continued to be an issue due to the small number
of samples. To address this, we implemented an
early stopping criteria based on the validation
loss. The batch size was chosen to be 64 based
on qualitative analysis of the baseline results.

4.4 Hyperparamter Tuning

To train the hyperparameters, we chose to use a modified grid search over a small number of hidden
layers and nodes. We were restricted to a smaller number of hidden layer and nodes due to the lack
of data, despite upsampling. This resulted in the following hyperparameter search grid:

Parameter Range
Number of Hidden Layers (L) 3, 5, 7, 9, 11

Number of Nodes per Layer (N) 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
Table 4: Two Layer NN Model Hyperparameter Search

Unlike a normal train/test split, we utilized the LOPO split method. For hyperparameter tuning, we
decided to choose Kka2 as our withheld set. After evaluating each hyperparameter combination for
accuracy, precision, and recall, the final model architecture consists of 7 hidden layers with 60 nodes
each (See Figure 2). Once the neural network reached 9 hidden layers or larger numbers of nodes,
the learning process began to break down and resulted in networks that only predicted a single class
for all examples.

5 Experiments/Results/Discussion

4



Evaluation Metric Measure
Accuracy .439
Precision .491

Recall 0.310

Table 5: Final Model Evaluation (TEM-1)

The three metrics we use to evaluate our three-class
classifer were categorical accuracy, precision, and re-
call. For the final model, we witheld samples from
TEM-1, trained the model using the hyperpameters de-
scribed above. After training and evaluating the model
the evaluation metrics showed an overall improvement
over the two-layer neural network baseline, except for
decreased recall (See Table 5). Compared to the logistic regression baseline, the accuracy decreased,
but the precision increased. Furthermore, the model continued to overfit to the training data, sug-
gesting that additional training data will be needed. These data should consist of additional proteins
outside of the protein families already contained within this dataset.

Figure 3: TEM-1 Final Model Heat Map

Analysis of the confusion matrix also supports
improved predictive power (See Figure 3) Dele-
terious mutations were well predicted. Addition-
ally, the final model. These shortcoming may be
due to a lack of generalizability given the lack
of unique beneficial and neutral mutations in
the starting data set. Despite upsampling these
classes, the algorithm may not have enough data
to properly generalize to a new protein. The lack
of training data also reduced the effectiveness
of the FEATURE encodings because it limited
the number of shells that could be used due to
problems of overfitting.

Furthermore, the final neural network model
failed to achieve similar performance to the En-

vision algorithm, which was trained on the unaugmented starting dataset. In addition to the lack of
data mentioned above, additional factors may have contribued to the weaker performance. First, some
of the assumptions used to aggregate the FEATURE encodings may not hold in reality. In particular,
the assumption that mutations do not cause changes to the overall structure may not hold in all cases
and contribute to the lack of generalization across proteins. One potential fix would be to add an
additional processing step to the input pipeline: generate a structural model for each mutation using
Rosetta to better capture the true microenviroment. ((Simons et al., 1999))

6 Conclusions and Future Work

While the final model trained in this project did not achieve strong performance compared to other
computational approaches, it does illustrate the potential that neural networks have in advancing
directed evolution and protein engineering projects. Like all other deep learning applications, the size
of the training dataset is the most significant obstacle to creating a well-performing model. However,
obtaining well-curated datasets for this particular application is a major obstacle due to study-to-study
variance and a lack of a standardized, central repository. However, DMS experiments continue
to improve and as more data becomes availaible, neural networks will be able to make significant
contributions to directed evolution and protein engineering projects.

7 Contributions

All work on this project was conducted by Anthony Agbay. The author would like to thank Shubhang
Desai and the CS230 teaching staff for their guidance on project scope and implementation details.

5



References
(2019). UniProt: A Worldwide Hub of Protein Knowledge. Nucleic Acids Research, 47(D1):D506–D515.

Publisher: Oxford Academic.

Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., Kondrashov, A. S., and
Sunyaev, S. R. (2010). A Method and Server for Predicting Damaging Missense Mutations. Nature Methods,
7(4):248–249.

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., and Bourne,
P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1):235–242. Publisher: Oxford Academic.

Fowler, D. M. and Fields, S. (2014). Deep Mutational Scanning: A New Style of Protein Science. Nature
Methods, 11(8):801–807.

Gray, V. E., Hause, R. J., Luebeck, J., Shendure, J., and Fowler, D. M. (2018). Quantitative Missense Variant
Effect Prediction Using Large-Scale Mutagenesis Data. Cell Systems, 6(1):116–124.e3.

Halperin, I., Glazer, D. S., Wu, S., and Altman, R. B. (2008). The FEATURE Framework for Protein Function
Annotation: Modeling New Functions, Improving Performance, and Extending to Novel Applications. BMC
Genomics, 9(2):S2.

Hopf, T. A., Ingraham, J. B., Poelwijk, F. J., Schärfe, C. P. I., Springer, M., Sander, C., and Marks, D. S. (2017).
Mutation Effects Predicted From Sequence Co-Variation. Nature Biotechnology, 35(2):128–135.

Huffman, M. A., Fryszkowska, A., Alvizo, O., Borra-Garske, M., Campos, K. R., Canada, K. A., Devine, P. N.,
Duan, D., Forstater, J. H., Grosser, S. T., Halsey, H. M., Hughes, G. J., Jo, J., Joyce, L. A., Kolev, J. N., Liang,
J., Maloney, K. M., Mann, B. F., Marshall, N. M., McLaughlin, M., Moore, J. C., Murphy, G. S., Nawrat,
C. C., Nazor, J., Novick, S., Patel, N. R., Rodriguez-Granillo, A., Robaire, S. A., Sherer, E. C., Truppo, M. D.,
Whittaker, A. M., Verma, D., Xiao, L., Xu, Y., and Yang, H. (2019). Design of an in Vitro Biocatalytic
Cascade for the Manufacture of Islatravir. Science (New York, N.Y.), 366(6470):1255–1259.

Kabsch, W. and Sander, C. (1983). Dictionary of Protein Secondary Structure: Pattern Recognition of Hydrogen-
Bonded and Geometrical Features. Biopolymers, 22(12):2577–2637.

Langan, R. A., Boyken, S. E., Ng, A. H., Samson, J. A., Dods, G., Westbrook, A. M., Nguyen, T. H., Lajoie,
M. J., Chen, Z., Berger, S., Mulligan, V. K., Dueber, J. E., Novak, W. R. P., El-Samad, H., and Baker, D.
(2019). De Novo Design of Bioactive Protein Switches. Nature, 572(7768):205–210.

Ng, P. C. and Henikoff, S. (2001). Predicting Deleterious Amino Acid Substitutions. Genome Research,
11(5):863–874.

Nimrod, G., Fischman, S., Austin, M., Herman, A., Keyes, F., Leiderman, O., Hargreaves, D., Strajbl, M., Breed,
J., Klompus, S., Minton, K., Spooner, J., Buchanan, A., Vaughan, T. J., and Ofran, Y. (2018). Computational
Design of Epitope-Specific Functional Antibodies. Cell Reports, 25(8):2121–2131.e5.

Simons, K. T., Bonneau, R., Ruczinski, I., and Baker, D. (1999). Ab initio protein structure prediction of CASP
III targets using ROSETTA. Proteins, Suppl 3:171–176.

Smith, P. R., Bingham, A. S., and Swartz, J. R. (2012). Generation of Hydrogen From NADPH Using an [FeFe]
Hydrogenase. International Journal of Hydrogen Energy, 37(3):2977–2983.

Touw, W. G., Baakman, C., Black, J., te Beek, T. A. H., Krieger, E., Joosten, R. P., and Vriend, G. (2015). A Series
of PDB-Related Databanks for Everyday Needs. Nucleic Acids Research, 43(Database issue):D364–368.

Xiao, H., Bao, Z., and Zhao, H. (2015). High Throughput Screening and Selection Methods for Directed Enzyme
Evolution. Industrial & Engineering Chemistry Research, 54(16):4011–4020.

6



A Appendix - Figures

Figure A.1: 2-layer Neural Network Baseline Confusion Matrix Heatmaps

Figure A.2: 2-layer Neural Network Upsampled Baseline Confusion Matrix Heatmaps

B Appendix - Tables

Protein Uniprot Accession Number PDB Accession Number
TEM-1 P62593 1XPB
KKa2 P00552 1ND4
Uba1 P0CG63 3CMM

PSD95pdz3 P31016 1BE9
Pab1 P04147 1CVJ
hsp90 P02829 2CG9

Table B.6: Protein Accession Numbers

7


	Introduction
	Related work
	Dataset and Features
	 Methods 
	Data Processing
	Baselines
	Logistic Regression
	Two-Layer Neural Network

	Neural Network Model
	Hyperparamter Tuning

	Experiments/Results/Discussion
	Conclusions and Future Work
	Contributions
	Appendix - Figures
	Appendix - Tables

