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Abstract

My goal is to train a network to predict the volatility surface of the QQQ options
using the volatility surfaces of 10 of its most highly correlated components. This
approach is an end to end approach and assumes the data understands the important
relationships between the surfaces. It does not seek to understand what the surface
should look like in a theoretical context or what a long term fair surface would
look like. It seeks to understand the rules that the market is using to relate these
surfaces in the recent past and into the near future. Additionally, the input set
includes straddle information for all symbols in order to allow the model to focus
on the shape of the surface without requiring it to also predict the expected future
volatility of each stock or ETF. The model is able to predict a surface with very
tight clustering around the expected value and with very few outliers.

1 Introduction

Market makers are the car dealers of the financial world. Their role is to buy inventory at wholesale
prices and sell inventory at retail prices. When you trade in your car to buy a new one, the car
dealer tries to offer you a price for your used car that will allow them to liquidate that inventory for a
reasonable profit. They are not buying your used car because they expect its price to rise. They are
looking to facilitate your desire to buy a new car without exposing themselves to unwanted losses
when buying your old car. In the same way that understanding the used car market is important for
car dealers, understanding the current rules that the market is using to value related options can help
market makers avoid undesirable losses while they seek to liquidate the inventory they are acquiring
through their market making activities.

2 Related work

In finance, models are typically built to generate alpha, which is a measure of excess return when
compared to a benchmark. For example, the stock market’s performance. The problem I am trying to
solve is very niche. Instead of trying to create alpha, I am instead looking for a model to avoid negative
alpha. As such, there is not a lot of literature related to previous efforts. However, "Gated neural
networks for implied volatility surfaces"[1] and "Volatility Model Calibration With Convolutional
Neural Networks"[2] both demonstrate the feasibility of applying neural network learning to the
problem understanding implied volatilities. Gated neural networks for implied volatility surfaces
shows that a neural network trained with 20 years of data for the S&P 500 can produce a volatility
model that outperforms the widely used surface stochastic volatility inspired (SSVI). Volatility Model
Calibration With Convolutional Neural Networks shows that a neural network can be used to replicate
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the calibration of the Heston model which is then used to significantly speed up portfolio analysis
tasks.

3 Dataset and Features

The raw dataset is a database of over 6 million implied volatility samples for the QQQ index and its
10 highest correlated components, AAPL, AMZN, CMCSA, CSCO, FB, GOOG, GOOGL, INTC,
MSFT, and PEP. These were sampled every five minutes during regular trading hours. The data is
all from the same distribution. The features used in the training/testing sets are “time to expiration”,
“moneyness”, “at the forward price”, “at the forward implied vol”, and “implied vol”. For this project,
I wrote a “data cleaner” application. The raw dataset was first preprocessed by this data cleaner
which verified that for each intended output sample there were at least 5 (a hyperparameter) different
“time to expiration” sets each containing at least 8 (a hyperparameter) different “moneyness” samples.
Samples that failed to meet these requirements were discarded at this stage. Sample units are collected
by sampling all of the stocks at the same time. Sampling is repeated every 5 minutes throughout
the normal trading session. The cleaned dataset was used to generate the dev (50,000 samples), test
(50,000 samples), and training (remaining samples) sets. For each QQQ option sampled, we create
our dataset by building a sample block for each input symbol. These sample blocks are stacked and
reshaped into a vector of 2004 input features and 1 output.

Figure 1: Data set construction

4 Methods

The network is a deep, fully connected residual network[9] using Relu activation f(x) =
max(x, 0)[11] for all layers except the output layer. The output layer uses activation f(x) = x.

The loss is computed using root mean squared error =
√
( 1n )

∑n
i=1(yi − xi)2. Adam optimiza-

tion[10] is used for gradient decent learning. Multiple residual blocks are stacked for a total depth of
92 hidden layers of which 28 are fully connected layers. Dropout[12] is used in the residual blocks to
reduce overfitting. The network is implemented using the Keras framework[3].

The goal of the model is to implement an end to end network capable of learning how to produce a
useful volatility surface. The residual network design is used because it enables the construction of
deep neural nets that are easier to train and more accurate while also resolving the vanishing gradient
problem. Identity blocks are constructed to allow chunks of data to skip over fully connected layers
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Figure 2: Network Diagram and Identity Block Diagram

while also allowing those layers to participate in learning. At the output layer, linear f(x) = x
activation is used to allow the learned features to directly pass forward their contribution through
simple summation. In this way all of the inputs contribute to a proportion of the final value and that
the network will have already learned how to weigh them. Adding a non-linear activation at the final
node forces the accumulated learning to go through an unneeded transformation. I am using the idea
of early stopping by evaluating the model against my dev set periodically and saving its parameters
when the mean squared error for the dev set is lower than the previous best evaluation. I am also
using an adaptive learning rate defined as...

learning rate = f(slope, learning rate) =

{
max learning rate

1.25 ,0.000001, if slope ≥ 0

min(1.25 learning rate),0.001, otherwise

New samples are added daily. The adaptive learning rate allows the model to increase its learning
rate when the new samples allow for faster forward progress. When the model absorbs the new
information, the learning rate can the automatically decrease for fine tuning.

5 Experiments/Results/Discussion

I made a mistake early on by not recording results for all of my hyperparameter combinations. Since
realizing this mistake, I have retrained some examples of different hyperparameter combinations that
I thought were interesting, because they show why I stopped iterating with some hyperparameters.
Since these models take several days to train, I was not able reproduce all of the hyperparameter
combinations that I tried.

I experimented with different activations, specifically relu, sigmoid, and tanh. All of them worked to
some degree, but when thing went bad, they went really bad with sigmoid and tanh. Relu seemed to
fail more gracefully and intuitively made more sense to me. Because this is a regression problem, it
didn’t seem useful to me to have the activation outputs constrained the way sigmoid and tanh would.
For these reasons, I focused on relu.

I found that larger mini batch sizes generally worked better, but I was limited on how large I could
test. Because my model and dataset were large, Keras would crash due to memory exhaustion once
the mini batch size became too large. In the end, I just used the largest mini batch size that I could
without Keras crashing.

As mentioned above, I found that a learning rate 0.001 was good for training the model at first, but
eventually, the slope of the loss over the last 10 epochs starts oscillating between positive and negative
values. At this point, the only way I was able to create a negative slope for the loss was to decrease the
learning rate. New data is added to the dataset daily. The adaptive learning rate algorithm described
in the methods section automates these adjustments as new samples are integrated into the data sets.
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When we learned about residual networks in the course, I realized that they would be extremely
helpful with problem I was trying to solve. I scrapped my prior models and moved to the the residual
architecture that I am using now. After a few iterations on the depth and number of hidden nodes, the
model was producing errors (Figure 4) that were in an acceptable range.

Models with mean absolute error less than 0.008, negative Fisher kurtosis, and near zero skewness
are useful for this problem. There are limits to how precisely implied volatility can be sampled due to
issues such as underlyer market data jitter, bid ask spreads, and pricing model assumptions. Around
0.008 error, sampling noise starts taking over while the monetary value of the error becomes less
important. A negative Fisher kurtosis indicates the errors are tightly clustered around mean. A near
zero skewness suggests the errors are not overwhelmingly of the same sign. The model has been
consistent at producing a surface (Figure 3, Figure 5, Figure 6) with tightly clustered errors and very
few outliers.

Figure 3: 3d view of the different between the predicted and expected volatility across the moneyness
and time axes

As I iterated with methods for regularizing the model, I quickly discovered that weight decay
regularization was preventing the model from learning. As you can see in Figure 4, L2 regularization
with a penalty of just 0.000001 was enough to stop the model from learning. Dropout worked with
very small drop rates of 1-2%, but the more commonly used drop rate of 20% (Figure 4) also stopped
the model from learning.

Figure 4 shows that the results with 12 identity layers under performed the 8 identity layer model. In
early attempts the 12 layer models did eventually achieve comparable results to the 8 layer model.
However, as mentioned about, I had to retrain these models in order to present results. That said, the
8 identity layer model trains faster with acceptable errors.

Correlations in the stock market have a short shelf life. Every day introduces small changes to the
relationships that have to be trained into the model. Data mismatch is the primary problem with this
model. My goal in iterating on the number of identity blocks was to provide the network with enough
depth to not only learn today’s relationships, but also tomorrows. Having too many identity blocks
does slow the model down, but the residual network design is still able to learn.
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Figure 4: Results of important hyperparameter combinations

6 Conclusion/Future Work

The model is able to learn the relationships between volatility surfaces. Each day new data is added
to the dataset, while older data is removed. Transfer learning allows the model to quickly retrain
to the new dataset. This rapid retraining allows it to evolve in near real-time with the underlying
relationships. This allows the model to help answer the question, "What is normal now, given what
we know about the current state of the market." This can help differentiate between changes in the
market which are novel and changes that are fully explainable by relationships which have already
been observed and learned.

I think the residual network concept played a significant role in the success of this model. This
approach is an end to end approach. It expects the data to know what is important. Residual networks
allow for a model that is overly deep to still effectively learn from the data. This also allows the
model some degree of future proofing in case future data needs the extra depth.

Going forward, I’d like to study the activations to understand what the model thinks is important.
However, as this is an evolving model, it would not be enough to study what is important today. I
think it would be really important to study these activation over time. Are the same things always
important? Are they cyclic?

I would also like to iterate further on the depth and number of hidden nodes. I was able to identify
hyperparameters that did and didn’t work, but I was not able to identify a gradient that could be use to
guide hyperparameter iteration. Considering how slowly these networks train from random weights,
it would useful if the network could be made smaller without sacrificing accuracy.
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7 Appendix

Figure 5: Multicolored view of the different between the predicted and expected volatility. The x-axis
is the "moneyness" of the options. Each line is a formed using options sampled concurrently and
with matching "time to expiration" values.

Figure 6: View of the different between the predicted and expected volatility. The x-axis is the time
at which the samples were taken and reflect a 2 and a half hour period.
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Figure 7: View of a deflection in the implied volatility surface cause by an order, combined with the
model’s prediction.
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