CS230

Predicting Retail Petrol Prices in Australian
Restorative Markets
(Time Series Forecasting)

Miles Perry
Department of Computer Science
Stanford University
mperry2@stanford.edu

Abstract

Major cities in Australia experience restorative cycles in retail petrol prices due to
the competitive nature of these markets. This report presents a simple LSTM, a
sequence-to-sequence LSTM and a WaveNet-inspired Temporal CNN (TCN) for
time series forecasting of petrol prices in Australia. The hope is this will provide
better visibility to consumers and businesses about upcoming changes in price,
allowing them to plan ahead more efficiently. The TCN model performs best with
a 1.38 % MAPE over a 60-day prediction window using the test data.

1 Introduction

Restorative price cycles for petrol have existed in Australian major cities for many years now. Price
competition in petrol markets is high and petrol retailers compete aggressively on price until margins
have been eroded. Below you can see the cyclical price patterns at a site in Sydney and how prices
drop close to an average wholesale cost before jumping back up again.
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Figure 1: Prices and wholesale costs (tpg) for site in Sydney.

When margins are low the local market will wait for a retailer with a strongest brand image (usually a
major oil brand) to raise prices significantly. When this happens, the other brands will follow. This is
known as a restoration and the price cycle begins again. Price cycles are confusing for consumers
and complex for fuel retailers to predict. An algorithm that can accurately predict petrol prices would
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allow both consumers and fuel retailers to plan ahead. For example, the Australian Competition and
Consumer Commission estimates the average motorist in Sydney could save $175 per year if they
avoid buying at the peak price [1].

This project takes a simple LSTM as a baseline and compares it with a more complex WaveNet-
inspired Temporal CNN (TCN) and a Sequence-to-Sequence (Seq2Seq) LSTM for predicting petrol
prices in New South Wales, Australia. Initially I explored the TCN versus the baseline only. However,
when I saw the prediction capability of the TCN I wanted to cross compare with a more complex
LSTM architecture to better understand the strengths and weakness of the TCN. The baseline
algorithm consists of a single layer LSTM with 8 units, connected to a single dense layer with 1
unit. The Seq2Seq2 LSTM uses a two-layer encoder-decoder network with 256 units per LSTM cell
and Teacher Forcing. The TCN consists of multiple dilated causal convolutional layers with gated
activations, residual and skip connections. All algorithms input a 600-day history of daily price data
and use it to predict the next 60-day interval of daily prices.

The algorithms were written using Tensorflow 2.2.0 and executed in Google Colab. Code for this
project can be found at https://github.com/milesperry81/CS230.

2 Related work

An article on Linked-In by Jacob Bourne [5] presents a simple LSTM to do next day petrol price
predictions in the US using multi-variate inputs. Whilst a good inspiration for my baseline model I do
not believe it represents state-of-the-art technology. Another article related to predicting petrol prices
was made available by Claudio Stamile on Medium.com [6]. This article uses publicly available
data in Italy to predict the next 14 days of petrol prices. The model used was a 1D dilated causal
convolutional neural network. The results were interesting and there was a link to a GitHub repo for
a similar project by Joseph Eddy on web traffic data using a WaveNet-inspired algorithm [12][16]
and Seq2Seq LSTM. This repo formed the base code for this project.

An academic paper by Alberto Gasparin at al. called Deep Learning for Time Series Forecasting: The
Electric Load Case [7] provides a good summary of different deep learning techniques for time series,
including a WaveNet-inspired TCN and Sequence to Sequence LSTM. The conclusion was that
TCN’s are very promising for sequence modelling, and Seq2Seq LSTM’s perform significantly better
than the standard LSTM. A paper by Krist Papadopoulos [13] also suggests using a WaveNet-inspired
TCN algorithm to perform time series forecasting with promising results. Deep Neural Networks
Approach for Multivariate Time Series Forecasting by Renzhuo Wan et al. [14] explores the use
of Multivariate TCN’s and concludes promising results versus LSTMs. Conditional Time Series
Forecasting with Convolutional Neural Networks by Anastasia Borovykh at al. [17], compares a
WaveNet-inspired TCN architecture to a LSTM, concluding that the TCN is well suited to time series
forecasting and outperforms the LSTM on financial index data.

There was sufficient evidence to show that I should explore TCN’s and LSTM’s for this project.
TCN’s are relatively unexplored for time series prediction. They promise faster computation and
good, if not better, performance than traditional LSTM’s for time series forecasting. LSTM models
are well known for addressing time series forecasting and the Seq2Seq LSTM is a sophisticated
LSTM variant that can be should be explored for cross comparison with the TCN. There is limited
work where these approaches have been applied to petrol price prediction. Hence, for this project I
chose to explore the Seq2Seq LSTM and TCN algorithms versus a simple LSTM baseline.

3 Dataset and Features

Fuel Check [2] is a regulatory body in the state of New South Wales. They collect price change
data from all fuel retailers in the state. The price change data is available by site, by product, by
date and time. Data from August 2016 to January 2019 was available in an immediately useable
format. The data for one site can be seen in Figure 1 above alongside wholesale cost data from the
AIP [3]. There is on average 1.5 price changes per site per day in New South Wales. As such the
data was manipulated into daily timesteps using SQL. Sites with zero prices on their first timestep
were removed due to a general lack of price data at later time steps. Data from September 2018 was
excluded due to a big drop in wholesale cost affecting the price cycles.



The time series data was segmented into smaller example windows of 600-day history and 60-day
prediction intervals. Examples were then split 80/10/10 percent into train/validation/test data. In all
there were 10456/1960/1961 examples for train/validation/test based on 1,307 sites in New South
Wales, including Sydney. All input data was normalized using mean and standard deviation.

4 Methods

Baseline LSTM

The baseline LSTM consists of one LSTM layer (8 units) and one dense layer (1 unit). It predicts one
timestep ahead. A walk forward approach is then used to feed the predictions back into the model to
generate a 60-day prediction interval.

Sequence-to-Sequence (Seq2Seq) LSTM

The Seq2Seq algorithm has two LSTM layers with 256 units in each cell. Figure 3 below shows a
similar RNN architecture as that used in this project.
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Figure 3. Seq2Seq RNN architecture [7].

During training Teacher-Forcing was used, such that the input to the first decoder timestep is the
input to the last encoder timestep and for subsequent decoder timesteps the actual target value from
the previous timestep is input, instead of the decoder output from previous timestep. Teacher-Forcing
assists training and speeds up optimization convergence. When making predictions Teacher Forcing
is not used and the output from each decoder timestep is passed as input to the next decoder timestep
as demonstrated in Figure 3. The final LSTM states from the encoder are used to initialise the decoder
states.

Temporal Convolutional Network (TCN)

The algorithm uses dilated causal convolutions in combination with WaveNet-inspired gated activa-
tions, skip connections and residual connections. Dilated convolutions skip a number of input values
at each layer of the network. Thus, providing a coarse exposure to a larger than usual receptive field
for later layers of the network. The causal component ensures the current time step cannot depend on
future time steps. A dilated causal convolutional network is illustrated in Figure 4.
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Figure 4. Dilated causal CNN layers [16].

There is a repeated residual block that runs the convolutions with different dilation rates. A residual
connection combines the input of the block with the output, which is then passed to the next residual



block. Within the block there is a gated activation unit consisting of a ReL.U filter and sigmoid gate.
This algorithm uses a ReLLU activation for the filter, unlike the WaveNet paper which use tanh. This
was found to yield better performance for this project. The gate and filter are multiplied together
to form the output and the skip connection output. After the residual blocks, the skip connections
are combined and fed into the final convolutional layers with dropout. The WaveNet residual block

architecture can be seen in Figure 5. The last 60 timesteps of the final 1D convolutional layer are
extracted and used as the prediction interval.

Skip-connections

Input

Figure 5. WaveNet residual block architecture [16].
Loss Function

An Adam optimizer was used with Mean Absolute Error (MAE) [18] for the loss function to reduce
the loss between the numerical prediction and actual target.

5 Experiments/Results/Discussion

A learning rate scheduler was used to find a good starting value for the learning rate (1e-3) before
training. A batch size of 128 was found to be suitably fast at converging to an optimum. MAE and
Mean Absolute Percentage Error (MAPE) [19] were used to evaluate the model in percentage and
absolute price terms. The historic input time frame was 600 days with a 60 day prediction interval.

Some notable hyperparameter choices made during experimentation can be seen in Figure 6.

TCH {100 epochs) Seq2Seq LSTM
Dilated
Dilated  |ConviD |Gatefilter Validation Validation
Index [filtersize |channels |activation |Dilations Rates MAE/MAPE Index |Epochs |LSTM units |LSTM layers | MAE/MAPE
1 2 32|tanh 11,2,4,8,16,32,64,1,2,4,8,16,32,64] 2.86/2.02% 1| 109 50| 1)4.68/3.18%
2 2 64|tanh [1,2,4,8,16,32,64,1,2,4,8,16,32,64] 2.64/1.86% 2 100 256 1|4.36/3.01%
3 5 &4|tanh [1,2,4,8,16,32,64,1,2,4,8,16,32,64) 2.10/1.47% 3| 100 256 2|5.26/3.61%
4 5 &2|RelU 11,2,4,8,16,32,64,1,2,4,8,16,32,64] 2.05/1.44% 4| 400 56 1)3.58/2.48%
5 5 54|RelU [1,2,4,8,16,32,64,1,2,4,8,16,32,64,1,2,4,8,16,32,64] |199/139% 5| a0 256 2|3.43/2.48%

Figure 6. Notable hyperparameters and results.

The final results for all models on the validation and test data can be seen in Figure 7.

100 Epochs 400 Epochs

Validation, L Test, Validation, . Test,

Architect CoE Validation, T Test, i Validation, o Test,
rchitecture
. |MAPE (%) . |MaAPE (%) . |MAPE (%) _|MAPE (%)

(cents/litre) (cents/litre) (cents/litre) (cents/litre)
Baseline L5TM 8.26 5.84 8.18 5.80 6.37 4.48] 6.37 4.48)
Seq2Seq LSTM 5.26 3.61 5.21 3.58] 3.43 2.44] 3.33 2.38)
TCN 1.99 1.39 2.02 1.41] 1.91 1.34] 1.96] 1.38)

Figure 7. Table of results.

The baseline LSTM shows limited ability to model the petrol price data beyond the first timestep.
Predictions tend to drift off in a single direction. This is reflected in the higher MAE and MAPE.



The Seq2Seq LSTM shows improved MAE and MAPE results over the baseline. Additional layers
and longer training were required to see improvements in the results (see Figure 6 and 7). At 400

epochs it is good at modelling price cycles, but less so where the cycles are not well defined. See
Figure 8.
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Figure 8. Seq2Seq LSTM 60-day prediction, 400 epochs.

The TCN models the price cycles very well and has the best MAE and MAPE results. It trained and
learned faster than the Seq2Seq LSTM. More dilated layers with 64 channels and a filter size of 5

yielded best results during training (see Figure 6). Predictions on less well-defined cycles are better
than the Seq2Seq LSTM. See Figure 8.
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Figure 9. TCN 60-day prediction, 400 epochs.
6 Conclusion/Future Work

The Seq2Seq LSTM predictions were good, but showed larger error on less well-defined cycles. The
TCN model shows a superior forecasting ability and faster training times when compared to the other
models. Its predictions closely follows price cycles of varying wavelengths and amplitudes. It is
likely that the deep architecture and dilated convolutions allows it to learn more complex patterns and

take longer time frames into account. The relatively fewer number of parameters in the TCN make it
computation more efficient than the Seq2Seq2 LSTM.

Some considerations for future work:

e Train the Seq2Seq LSTM longer. Can it reach the TCN performance?
o Try shorter historic time windows. What is the accuracy with less historic input data?
e Make predictions on petrol prices from a different distribution? E.g. Queensland.

e How good is the TCN at predicting non-restorative fuel prices, such as diesel?
7 Contributions

This project was the work of a single contributor, Miles Perry.
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