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Abstract

Modern day state-of-the-art deep neural networks used in the field of computer
vision are largely feed-forward convolutional neural networks (CNNs). While deep
learning as a field in general was heavily inspired by the biological structure of
the human brain, most modern models have since then significantly deviated from
their biological counterparts; while the human ventral visual pathway is 4-8 levels,
modern start-of-the-art computer vision networks often exceed 100 layers in depth,
albeit with the use of skip connections and residual blocks [14]. One important
aspect of the human visual system that has not be since popularly translated,
however, are the existence of recurrent circuits between the ventral stream cortical
areas [2,14]. In this project, I explore the augmentation of ResNet18 with one
timestep of recurrent attention, in which the final global vector representation is
used to generate three queries fro three prior activation maps in the network. While
the model’s performance is subpar compared to that of ResNet18 and MobileNet
V2, the attention heatmaps show promise for reccurent visual attention models of
the future.

1 Introduction

Currently, there exists a few differing interpretations for the role of these crucial recurrent circuits.
One possible interpretation follows in the footsteps of ResNet and DenseNet [27][28], but leveraging
skip connections recurrently within a convolutional block, as opposed to sending information forward
[11]. Another interpretation focuses on the use of a variety of forms of visual attention to query
and attend to the information processed by convolutional blocks before it [3,4,5,6,22]. I choose to
focus on the latter interpretation of recurrence in the human ventral stream as it is my intuition that
current attention gives a model the ability to query different uncertainties within its changing internal
representation of the image at different timesteps. Constrained by computational resources, I will
attempt to use a multiprong attention mechanism to simulate one timestep of current attention.

The task I will be approaching with this novel model is action classification framed as a general
image classification problem, where the input is the entire image, and the output is one of 40 classes
(see Dataset). I chose this task, along with the accompanying dataset, primarily to compare the
performance of my proposed model against deep modern neural networks (e.g. ResNet, DenseNet)
[27][28]. My goal with this project is to see whether or not modern network architectures can be
augmented by the biologically mechanism of recurrent attention. Action classification is a task of
considerable difficulty, and one that involves some level of understanding of the interaction between
two objects in an image. It is my hope that such a setting will allow the proposed mutliprong attention
mechanism to combine fine-grained information from different parts of the image (i.e. the human
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pose and the object being interacted with) in a mutually reinforcing manner. With the ability to
querying backwards, I hope that the model will choose to attend more closely to areas of uncertainty,
and thus recover the nuanced details of human actions in the form of hand gestures and poses.

2 Related work

2.1 Biological Recurrence

When we use our human visual system, we are only capable of attending to a select portion of our
visual field at any given time. Evidence suggests that there is both a bottom-up (i.e. finding saliencies
in the image) and a top-down (i.e. based on our task/motivation at the time) control of where we
attend to [29]. Furthermore, research has shown that there are feedback loops present at nearly every
stage of visual processing in the human brain [2]. We know that the outputs of higher-level neurons
actively affect the signal processing of the lower-level neurons, but we are unaware of exactly how
such recurrent relationships affect the signal processing from end to end [2]. There is hope that
the use of neural networks to help uncover the uncertainty behind biological recurrence. One such
attempt, CORnet, is regarded as a lightweight alternative to modern, state-of-the-art neural networks
for the task of image classification, while adhering strictly to the cortical areas of the human visual
cortex and leveraging recurrent neural networks to simulate the action of biological recurrence [11].

2.2 Visual Attention

Attention in neural networks was invented and popularized in the realm of natural language processing
(NLP) [30]. Specifically, attention has helped augment modern neural language models by providing
a mechanism through which the model can query the input, given some piece of context. Visual
attention is most popular in visual question-answering tasks, some 2-dimensional input (the raw
image or, more commonly, some CNN-produced feature map) is attended to in order to answer a
language-based question [7,9].

In its most basic form, visual attention can apply methods from 1-dimensional attention by treating
each pixel location as a vector with length equal to the number of channels [9,22]. Under this
assumption, we can apply dot product [22], addative [31], parametric [22], hard [9], soft[9], (etc.)
attention as we would like; we use the query vector and the channel vector taken from the input to
create an attention map, which is subsequently multiplied element-wise with the input, broadcasted
across the channels dimension. In order to better retain the spatial aspect of 2-dimensional data,
grid attention was introduced that allowed the query to also be 2-dimensional, as opposed to 1-
dimensional [31]. CoordConv attempts to further augment the spatial ambiguity of convlutional filters
by concatenating additional channels of spatial information [24]. Squeeze and excitation networks
offers a complex visual attention mechanisms taking into account not only spatial information, but
also the explicit modelling of interdependencies between channels [23].

Multihead attention has remained a rather sparse field of research up to this point. Unsurprisingly,
it has been applied to NLP-computer vision hybrid tasks such as image captioning [32] and image
search [33].

2.3 Recurrent Visual Attention

There predominant approach for recurrent visual attention has been the top-down, hierarchical
approach. A specific class of glimpse networks aims for especially lightweight understanding of
visual data. Using a RNN controller, the such models queries a ’glimpse’ - a small crop of the total
input image - to process at every time step [1,3,6]. Such glimpses resemble a form of hard attention.
RAM introduced the idea of glimpse networks, using reinforcement learning to determine where
to glimpse at every time step [6]. DRAM extended RAM in the task of multiple object recognition
[3]. EDRAM produced a fully-differentiate form of glimpse network to be train end-to-end using a
dataset with bounding box labels of the desirable glimpse location [1]. Other, soft attention-based
approaches include MAM-RNN [8] and S3TA [13].
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2.4 Novelty

Multiprong attention uses separate queries to attend to different inputs, whereas multihead attention
uses one query vector to attend to different positions. This approach this paper takes is somewhat
similar to [22], in which the result of the global average pool of VGG is used as a query to attend to
prior feature maps in the network. The novelty we offer comes in the form of 1) separate queries per
feature map attended to generated via a 2-layer perceptron and 2) propagating the attended to feature
map through the remaining convolutional filters of the network. We hope that by simultaneously
attending to the network with unique queries, we are able to simulate the behavior of human recurrent
attention without using recurrent networks.

3 Dataset and Features

I will be using the Stanford 40 Actions dataset [21], which was introduced in 2011 as a larger human
action dataset than the then most commonly used PASCAL VOC Action Images dataset [20]. The
Stanford 40 Actions dataset is comprised of 40 human actions, such as "applauding" and "throwing a
frisbee", and there are 180-300 images per class [21]. The biggest advantage is the size of the Stanford
40 dataset, with 9532 total images to PASCAL VOC’s 1221 images. Like PASCAL, however, the
Stanford 40 dataset is also of substantial difficulty due to the varying poses, degree of visibility, and
amount of clutter in the images [21]. The original authors of the paper elected to use a training set of
100 images from each action class (4000 training images) with the remaining 5532 images in the test
dataset [21]. I have decided to randomly split the test dataset into equally sized test and validation
datasets, while maintaining training set as the suggested 4000 images [21].

Figure 1: Three images from the Stanford 40 Actions dataset corresponding to the actions
"applauding", "climbing", and "cooking.

4 Methods

4.1 Model Iteration

The original proposal for this project was to explore the mechanism of recurrent attention. The first
network I trained (ThreePassNet from Milestone 2) was intended to serve as a preliminary survey
of the recurrent attention mechanism. What I saw by examining the attention heatmaps from that
network was that the attention mechanism essentially removed crucial information, which the model
then sought to recover via its attention in the next timestep.

Despite this, I constructed and trained ReflectNet, which incorporated an LSTM controller of attention,
closely in-line with an heirarchical model of recurrent attention. What I found, however, was that the
network simply repeatedly attended to the same regions of interest over any number of timesteps. I
suspect that this is due to the difficulty of the training task at hand, with only 4000 available training
images to train the LSTM-guided attention mechanism.

As such, I created the final version of my network architecture, MultiProngNet, which is designed to
examine recurrent attention in the sense of higher level layers querying lower levels, without using
any RNN or LSTM blocks in the model architecture.
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Figure 2: The proposed MultiProngNet is based on four convolutional blocks taken with pretrained
weights from ResNet18. The input is first processed through the ResNet architecture, with the final
fully connected layer removed. The output vector of the global average pool is then passed through a

query network (2-layer perceptron), the output of which is split into three distinct query vectors.
These three query vectors then query the outputs of the first, second, and third convolutional blocks
to create a new set of feature maps. Each new feature map is then passed through the remainder of

the ResNet18 architecture before being the resulting outputs vectors of each feature map is
concatenated together and passed through a final classifier with 40 output classes.

5 Experiments/Results/Discussion

5.1 Experiments

ThreePassNet, ReflectNet, and MultiProngNet was each trained for 50 epochs using the Adam
optimizer (lr = 1e−3, momentum = 0.9, weight decay = 1e−5). A learning rate scheduler exponentially
reduced the learning rate by a factor of 0.1 every 10 epochs.

All convolutional layers were taken with pretrained weights from Torchvision’s repository of
ResNet18. All layers were then finetuned using the 4000 image training set from the Stanford
40 dataset.

5.2 Results & Discussion

Model Stanford 40 Top-1 Accuracy

ResNet18 75.2
MobileNet V2 75.8
ThreePassNet 62.8

ReflectNet 56.0
MultiProngNet 66.7
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Figure 4: Attention heatmaps for three validation set examples

In terms of performance, none of the three network architectures I proposed and implemented were
able to surpass the baselines set forth by ResNet and MobileNet. While 66.7% top-1 accuracy leaves
much to be desired, it shows that there is some merit to this approach. What is less encouraging,
however, is that the use of attention on the ResNet18 architecture actually lowered the performance
of ResNet quite noticeably, despite using the same pretrained layers.

Looking at the attention heatmaps, we see that the final layer of attention (on the most abstract feature
map) is far more concentrated compared to the earlier layers of attention. Interestingly, we see that
the model definitely is able to pick out salient regions of the image in all three cases. This is, however,
the model’s greatest strength and weakness. By focusing on the salient region, the model suppresses
background information to focus on certain areas of the image. In doing so, it is able to classify such
information on a more fine grained level. At the same time, the model might miss out on crucial
details it does not deem as salient at first.

The first example shows us a case in which the model correctly focses on both the person and the
object of interaction, and results in a correct classification. In the second example, we see the model,
particularly in the first level of attention, closely examine the pose of the actor. However, the object of
interaction (frisbee) is not attended to. Finally, we see an interesting example where the model appears
to correctly identify both the pose and the object, but wrongly classifies the image. In this case, it
is most likely due to the similarities between playing the violine and shooting an arrow. However,
we would hope that the fine-grained classification enabled by supressing background information
augment our ability to distinguish such cases.

6 Conclusion/Future Work

There is much more to be done in the field of visual attention. Ultimately, it is hoped that the
use of visual attention can lower computational costs by only examining certain salient regions of
the image, as opposed to its current state, which is very computationally heavy. For my line of
model architectures specifically, I would love to experiment more closely with the LSTM-guided
attention network. From what I examined in the heatmaps for ReflectNet, it appeared that the LSTM-
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guided attention would not change the areas of the image it would attend to between timesteps, and
thus negating the advantage of recurrent attention to start with. Given more time and computational
resources, I believe that recurrent attention can indeed be used to augment existing deep, convolutional
networks in classification involving fine-grained details, such as human actions.
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