A Multi-digit OCR System for Historical Records
(Computer Vision)

Jonas Mueller-Gastell Marcelo Sena
Department of Economics Department of Economics
Stanford University Stanford University

jonasmg@stanford.edu msena@stanford.edu

Chiin-Zhe Tan
Stanford Center for Professional Development
Stanford University
chiin@stanford.edu

1 Introduction

We study handwritten multi-digit number character recognition in historic census documents. To
the best of our knowledge there are no algorithms that have human-comparable performance for
this task. The end goal is to deploy a product which has two distinct features. 1) A preprocessesing
step adapted to the specific data set that we wish to digitize, 2) a generally useful deep learning
architecture to digitize handwritten multi-charcater strings. The preprocessing step will serve to
extract cells from a given table scan (a task that in principle could also be performed by a generalist
deep learning algorithm, but likely at a loss of performance vis-a-vis a human engineered specialized
product for our data). Previous related attempts of digitizing hand-written historical documents
include |de Buy Wenniger et al.|(2019) and [Wigington et al|(2018)), both specialized for long-form
text rather than tabular numeric information.

2 Dataset

Our data set contains images from the 1940 agricultural census records of Finland. We were in the
process of scanning the approximately 250,000 records available when COVID-19 lockdown orders
closed the archives. Even with only 28 images available, we already have a sufficient sample to
develop simple algorithms. We have extracted 8308 cells from these images, of which 1303 are
blank and 4385 contain a placeholder symbol (’-”). The figures describing the data distribution of the
remaining 2620 cells in greater detail are found in the Appendix (Figures [2a] 2b). As expected, there
is a large number of Os, 1s, and Ss, but also a small number of special characters (’,’, */’, ’+’, 7).

Given the small data set size, we forgo a proper test set and use 75% of the data as train and 25% as
dev set. Once COVIDI19 restrictions ease in Finland, we will perform a real test-set evaluation on
completely new data. We take care to sort the data such that train and dev set come from different
pictures. This helps us gauge the true out of sample loss we should expect when digitizing new pages,
as the handwriting of different authors is likely different.

We try to overcome the limitations of this small training set in three ways: 1) we employ a variety of
data augmentation steps on the actual training examples; 2) we have created synthetic multicharacter
strings similar in features to the original data, by composing multiple images from the MNIST
database (LeCun and Cortes, [2010). We employ this data in two different ways: a) we train the full

CS230: Deep Learning, Spring 2020, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

model on the synthetic data and then freeze the lower layers and retrain the upper layers at a reduced
learning rate using the real data; b) we mix the train set of the real data and the synthetic training data,
shuffle, and train the entire model, while using only the real data as validation set. 3) the last method
we experiment with to overcome our small dataset restriction is transfer learning from pretrained
models. We use VGG-19 (Simonyan and Zisserman), |2014)) and ResNet-50 (He et al.|[2016) en lieu
of our own convolutional stack and only train the upper recurrent layers on our real data.

3 Pipeline Overview and Network Architectures

All code can be found in our GitHub at https://github.com/JonasEc/CS230AWS. The prelimi-
nary overall program architecture is as follows:

1. We preprocess the original census scan to center all images identically and place a grid with
hard-coded cell boundaries over the original census image and extract the thus bounded
cells. See Figure[3ain the Appendix for an example.

2. We preprocess the cell images by eliminating page background color, turning to grayscale,
and normalizing the range of contrast. See Figure[3b]in the Appendix for an example. We
then standardize cell-image height and width to (64, 128).

3. A simple 8-layer convolutional neural net (CNN) determines whether or not the cell is
contains a non-empty, non-placeholder string, using a binary crossentropy loss. As we
already achieve 98% accuracy on the dev set with this simple model, we have concentrated
efforts on improving the pipeline elsewhere.

4. The actually populated cells are fed through a deep multi-stage network: we compose a
CNN-Dense-RNN and train it using the Connectionist Temporal Classification (CTC) loss,
in order to translate a sequence of image features into a sequence of numbers.

(a) A 6layer CNN extracts features from the image and scales it down to 1/8th its original
size

(b) A max-pooling layer with asymmetric kernel and a single dense layer translate the
image features into 16 time steps and 128 features

(c) A two layer, bidirectional gated recurrent unit RNN processes the features and a final
softmax layer makes predictions to be fed through the CTC loss

The basic architecture of the CNN-RNN-CTC is displayed in Figure[T] (generated using Biuerle et al.
(2019)). This is a rather parsimonious model: the convolutional step doubles features after each max
pool, topping out at 256 features, and the RNN layers only use 128 neurons in each direction. In total,
we use just over 1.7 million parameters. Nonetheless, we achieve 86.1% accuracy on the real data
dev set when using no data augmentation or pre-training. On the synthetic data we achieve 97.0%
accuracy. This architecture is loosely based on https://keras.io/examples/image_ocr/.

We also experimented with larger architectures. The largest architecture that seemed to gain some
performance on synthetic data replaces the 6 layer convolutional stack with 10 such layers, with
the final layer having 1024 rather than 256 features. We also scaled up the dense and GRU neuron
count to 256 each. Overall, this increases parameter count to over 21 million. This raises accuracy on
the synthetic dev set to 97.6%, only a modest improvement. Moreover, transfer learning from the
synthetic data to the real data did not yield promising results, so we abandoned this avenue for now.

What performance should we expect from these models? A research scientist with subject matter
expertise who reads the original forms will likely make near zero mistakes, except perhaps data-entry
(key stroke) errors from fatigue! Thus, unavoidable bias is likely near 0. However, one should also
evaluate performance versus a realistic baseline: data entry by non-experts on platforms such as
labelbox, MTurk, or by data entry firms situated in India. The error rate for these workers is likely in
the range of 0.5-2%.

https://github.com/JonasEc/CS230AWS
https://keras.io/examples/image_ocr/

256 256

Y9XZE
Y9XZE |
(23543
ZEX9T
Z€X9T |
ZeX9T

8ZTXv9
8ZTXt9
8ZTXK9 |
8ZTXv9

128 128 128

L T I 5

nputLayer Conv2D BatchNormalizatiorMaxPooling2D Reshape Dense Activation Bidirectional Group Group

Figure 1: Architecture of the CNN-RNN-CTC. Each orange layer composes a 2D convolution, batch
norm, and RELU activation. Kernel sizes are (7,7) and (5,5) for the first two layers and (3,3) for
all subsequent layers. To translate from (2D x Features) to (timesteps x features), we use pooling
with kernel (16,2) and a single dense layer with 128 neurons, batch norm, and RELU activation. The
bidirectional layers use concatenation of 128 GRU units with 0.5 dropout. The output sequences are
fed into a 15 output neurons softmax activation layer.

4 Training the Models: training design, data augmentation, and synthetic
data

We first discuss the basic design philosophy for trainability and overfitting prevention, and then
explain how we try to overcome the small training set size. We then discuss the actual optimization
progress and results.

Trainability: Even our smallest model consists of 10 layers in total, and we wanted to experiment
with much deeper models. Thus, we optimized our network architecture to prevent vanishing and
exploding gradient problems and ensure speedy convergence: 1) we use batch normalization for each
convolutional and the dense layer, 2) we experiment with a variety of optimizers and learning rate
schedulers — in the end we found a simple SGD with momentum and constant learning rate decay to
outperform ADAM in most cases; in addition, we set an automatic learning rate reduction by factor
i whenever a validation loss plateau was encountered. For speedy training, we use an AWS EC2
instance of type “p3.2 large”.

Overfitting prevention: The basic data set only leaves 1965 training examples after the train-dev split.
We thus were prone to overfitting. To lessen this risk, we use aggressive dropout in the bidrectional
GRU layers with a 50% dropout rate, aggressive max pooling, and automatic early stopping of the
learning algorithm when the validation loss no longer improves. In addition, we experiment with data
augmentation, detailed below.

These elements combined yield promising performance on their own. Training stops on early-stopping
after 42 epochs and achieves a training loss of 0.0978 and accuracy of 0.9585. Validation loss is higher
at 0.9211 and validation accuracy is a little lower at 0.8609, indicating some degree of overfitting.
Results from all training variants are displayed in Table[T}

4.1 Data Augmentation

Given the small data set and the presence of overfitting, we employ data augmentation. In a separate
training run, we distort each element of each batch with the following steps:
1. Random brightness distortion, uniformly increasing or decreasing brightness by up to 20%,

2. Addition of noise pixels (uniform random intensity speckles) in up to 8 random locations
and deletion of information in up to 8 random (4,4) pixel areas,

3. Addition of bounding lines to any or all of the four sides of the picture (to mimic the presence
of such lines when the cell extraction is off by a couple pixels),

4. Rotation of the picture by random amount between —30 and 430 degrees.

Examples of these operations are found in Figure] in the Appendix. Combining these features slows
training down considerably but has some positive effect. Training loss: 0.4538, training accuracy:

0.8289, validation loss: 0.5781, and validation accuracy improves by more than 1% to 0.8734. Note
that training loss and accuracy are no longer comparable to before, as these pictures are now
considerably harder to read. Thus, it is unsurprising that training set accuracy falls when
using data augmentation. Often, we have lower training accuracy than dev accuracy when
employing data augmentation, as the we do not augment the dev set data. We experimented
with decreasing the learning rate for the data augmented models and prolonging training by allowing
more patience for learning rate reductions on validation loss plateaus and early stopping, with limited
impact on validation accuracy.

4.2 Generating Synthetic Data

The synthetic data is built up from MNIST digits and we aim to mimic the visual features of the real
data as much as possible. The algorithm for creating a synthetic example is detailed in the Appendix
and example images are also in the Appendix in Figure[5] We generate 75, 000 training examples
and 5, 000 dev set examples. We then employ two different strategies to make use of this synthetic
data. First, we use transfer learning from a model trained solely on the synthetic data. Second, we
mix synthetic and real data in the training set.

4.3 Transfer Learning from Synthetic Data

First, we train the simple model described above until early stopping on exclusively synthetic data
(i.e., both for training and dev set). We achieve 97% accuracy on the synthetic dev set. We then
proceed to use transfer learning to adapt the trained model to the real data. To do this, we load the
weights of the model trained on synthetic data and set the entire CNN stack to be non-trainable. We
leave the softmax layer, the bidirectional GRUs, and the dense reshaping layer trainable — this means
about 350, 000 out of 1.7 million parameters can be retrained. Further, we reduce the starting learning
rate by a factor 10x to 0.0005, to reduce the risk of destroying the carefully trained weights.

We initially experimented with leaving all layers except the softmax layer untrainable but the just
under 4000 weights of the softmax layer were not capable of adapting to the GRU output sufficiently
flexibly. One theoretical reason for this is that the GRU layer can and should learn the non-random
sequencing of numbers. In the synthetic data, numbers are fully random — but in reality, 1s, 5s, and
Os are more common, and a comma is often followed by a 0, for example. Thus, the GRU layers need
to learn from the real dependency in the data for maximal efficiency. In the future, we will explore
adding this dependency to the synthetic data, too.

Unfortunately, transfer learning does not seem to yield large benefits — in fact, we have slightly
smaller dev set accuracy than without transfer learning! Without further data augmentation, we only
reach 0.8453 dev accuracy, and with data augmentation we actually fall to 0.8406 dev accuracy.
Interestingly, we performed slightly better using ADAM rather than SGD with momentum when
using transfer learning, reversing our earlier experience.

4.4 Mixing Synthetic Data with Real Data

We use the full 75, 000 synthetic examples shuffled into the real data training set and train the simple
network on this combined data set. We keep the dev set purely real data. This has two reasons: 1) we
want to know what the real accuracy on real data is; 2) we want to use early stopping and learning
rate scheduling based on feedback off the real accuracy.

This approach seems very promising — significantly more so than using synthetic data and employing
transfer learning afterwards. Without data augmentation, we achieve a dev-set accuracy of 0.9031.
When employing data augmentation, we used several runs of the optimization procedure, experi-
menting with the patience of early stopping and learning rate scheduling. The best run achieved a
similar dev accuracy of 0.8953. It seems the data augmentation process does not drastically improve
performance once data is plentiful.

5 Transfer Learning from Pre-Trained Networks: VGG19 and ResNet50

We attempted transfer learning from well known pretrained convolutional neural networks, namely
VGG-19 (Simonyan and Zisserman, 2014) and ResNet-50 (He et al.l [2016). We removed the

Training Validation
Loss Accuracy Loss Accuracy

Small network w/o Data Augment 0.0978 0.9585 0.9211 0.8609
Small network with Data Augment 0.4538 0.8289 0.5781 0.8734

Small network w/o Data Augment, 0.7862 0.7049 0.6187 0.8453
Transfer learning from synthetic
Small network with Data Augment, 1.6187 0.4892 0.6499 0.8406
Transfer learning from synthetic

Small network, mixing Real & Synth 0.0176 ~ 0.9950 0.5848 0.9031
Small network, mixing Real & Synth, 0.2534 0.9150 0.5467 0.8953
with Data Augment

Small network, mixing Real & Synth, 0.1609 09456 0.5208 0.8781
with Data Augment, higher patience

Big network w/o Data Augment, Trans- 0.9372 0.6619 1.1915 0.7078
fer learning from synthetic

Transfer learning from VGG-19 227 0.64 2.35 0.70
Transfer learning from ResNet-50 10.66 0.34 8.30 0.69

Table 1: Loss and Accuracy for the main models studied

convolutional layers used in the baseline model described above and added instead a pretrained
ResNet-50 or VGG-19 before our GRU layers. These layers are always frozen, since one of the
main motivations for this exercise is exactly to overcome our main hurdle which is our small training
dataset. We experimented adding different number of frozen layers and settled with 15 layers from
VGG19 and 50 layers of ResNet50. The pre-trained models all operate on RGB images while we
make classification on gray-scale images. To adapt the dataset, we replicate our single channel 3
times to make it conformable with the above networks.

Both ResNet50 and VGG19 are both readily available in Keras.applications. It seems likely
that other models could have achieved higher validation accuracy. Both VGG-19 and ResNet-50
are trained on ImageNet data, which is not ideal for our objective. A model trained on MNIST,
for example, would potentially push our accuracy even further. The lack of many such models is
also the explicit reason for why we undertook this project: as of yet, there are few papers exploring
digitization of multi-digit strings from handwritten documents; even fewer of these papers have code
implementations available online and none that we could find had pretrained weights available for
download. We hope that with our project we can eventually help to rectify this lack of available
models with weights.

Our general takeaways from this attempt is that using pretrained convolutional networks seems
promising in general. Exploring different setups with both pretrained neural networks, we managed
to obtain accuracy of 70% on the validation set, with very short training time. While this is inferior to
our other transfer learning attempts, they are showing that even models trained on vastly different
data produce weights of some use to our algorithm.

6 Future Work

While CS230 is now over, we do plan to continue to iterate on this project. Much more hyperparamter
tuning and network architecture experimentation remain to be done. More training data will soon
be available. However, we also plan to experiment with more fundamental changes to our approach.
Fundamentally, we want to generate a table digitization software. Tables have inter-cell dependency.
The CNN-RNN-CTC architecture allows us to exploit the non-randomness of multiple consecutive
digits. A human readers exploits the inter-cell dependency, too. To mimic this behavior, we will
experiment with end-to-end learning several cells at once, with the CNN-RNN for each cell embedded
in a larger RNN that uses an entire row or column of cells as input.

Contributions

We discussed the general angle of attack on the problem, the methods to overcome our small training
size (data augmentation, transfer learning, synthetic data), high-level architecture choices, and the
write up of the proposal, milestones, and final reports jointly. No demarcated contribution assignment
is feasible for these high level features of our project. Below we discuss each team member’s specific
detailed assignments.

Jonas Mueller-Gastell: Jonas was in charge of the nitty-gritty of the architecture implementation
and training on AWS. Jonas experimented with hyperparameters such as network size and shape,
regularization techniques, learning rate schedules, etc. Jonas merged and fine-tuned the work
performed by Chiin and Marcelo on their respective tasks into the main programming pipeline. Jonas
also took Chiin’s synthetic data generation code and refactored much of into data augmentation
methods.

Chiin-Zhe Tan: Chiin was leading the project on synthetic data generation. He developed the
algorithm for turning MNIST data into life-like fake data, first using OpenCV2 and then refactoring
as much as possible into TensorFlow based code. Chiin was also the main “bugtester”, sanity checking
the main architecture pipeline by re-implemeting it offline on his machine — both to find programming
bugs as well as to ensure our program made not just syntactic sense but did what we wanted it to do.

Marcelo Moura Jardim Teixeira Sena: Marcelo was in charge of implementing the transfer
learning routines from pretrained models. Jonas and Marcelo discussed and planned implementing the
different methods for transfer learning in the project, and split up the tasks, with Jonas implementing
transfer learning from synthetic data and Marcelo implementing transfer learning from pretrained
models. He also took charge of the alterations to the model architecture necessitated by pasting the
pretrained deep networks to our existing recurrent architecture.

References

Béuerle, A., van Onzenoodt, C., and Ropinski, T. (2019). Net2vis — a visual grammar for automatically
generating publication-ready cnn architecture visualizations.

de Buy Wenniger, G. M., Schomaker, L., and Way, A. (2019). No padding please: Efficient neural
handwriting recognition. CoRR, abs/1902.11208.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

LeCun, Y. and Cortes, C. (2010). MNIST handwritten digit database.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image
recognition.

Wigington, C., Tensmeyer, C., Davis, B., Barrett, W., Price, B., and Cohen, S. (2018). Start, follow,
read: End-to-end full-page handwriting recognition. In The European Conference on Computer
Vision (ECCV).

https://keras.io/examples/image_ocr/

https://keras.io/examples/image_ocr/

A Appendix

500

2000

1500

1000

500

(a) Distribution of Characters

1000

800

600

400

200

(b) Length Distribution of Strings

Figure 2: Data Description

(a) Example of Grid on Scan

(.07

(b) Isolated Cell = Preprocessed Cell

Figure 3: Extraction and Preprocessing

(a) Example of Line Addition and Info Deletion

(b) Example of Rotation and Noise Addition

Figure 4: Example of Data Augmentation Process

Figure 5: Example of Synthetic Data

A.1 Synthetic Data Algorithm

1.

Random determination of sequence length &k (up to six digits) and sampling of k£ random
digits from the MNIST data base

. Concatenation of the randomly rotated six digits, with some reduction in overlap between

the digit images. Here, with some probability up to one “comma” character is inserted in a
random position.

. Random resizing of the resulting digit image, to ensure different scale of images

. Random padding to the left, right, top, and bottom, to yield desired image dimension

(64,128) with the resulting image having a random center location

Up to four additional random digits are inserted above or below the number in focus, partially
outside the picture frame (to emulate overlap in the real data)

6. Random addition of pure noise

7. Random cell box lines, with some random rotation of the box lines

8. Random rotation of the composite image

	Introduction
	Dataset
	Pipeline Overview and Network Architectures
	Training the Models: training design, data augmentation, and synthetic data
	Data Augmentation
	Generating Synthetic Data
	Transfer Learning from Synthetic Data
	Mixing Synthetic Data with Real Data

	Transfer Learning from Pre-Trained Networks: VGG19 and ResNet50
	Future Work
	Appendix
	Synthetic Data Algorithm

