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1 Introduction

There has been numerous effort in recent technology to connect the analog and digital experience
in reading and writing. For example, the pen scanner is one of the pieces of modern technology
that is able to assist text recognition over printed text with Optical Character Recognition(OCR)
technology and convert to encoded text. Such technology allows for easier text editing, text-to-speech
applications, translation, preservation of data, and so on (5)). However, most of the products in the
market fall short of scanning mathematical equations but resort to saving them as an image (1)).

Hence we try to tackle the non-standard OCR task with real-world rendered expressions with LaTeX
labels through a deep learning model. Our attempts in incorporating the deep learning architecture
include applying the VGG model, and further developing to combine CNN with RNN to generate
latex from images.

2 Related Work

OCR for mathematical expressions has been actively sought amongst researchers. Mathematical
expressions with sub/superscript, operator symbols of different sizes, and nested fractions have made
mathematical expression recognition a non-standard OCR task (2).

Prior approaches include an integrated OCR system called INFTY, which conducts layout analysis,
character recognition, structure analysis, and error correction (9). Other approaches include an
attention-based neural encoder-decoder model (3)).

There also has been numerous effort in recognizing online and off-line handwriting of alphabets and
numbers (8). The CROHME competitions, first held in 2011, were intended to facilitate study of
math recognition amongst researchers (6).

One interesting paper we encountered attempted to classify over 300 mathematical symbols in
handwritten text (7). Their model used a Simple Linear Iteratve Clustering (SLIC) method to group
connected pixels and isolate individual characters in the handwritten text. The researchers then used
a pre-trained SqueezeNet cnn architecture for classifying these identified regions. The SqueezeNet
architecture consists of a combination of 1x1 and 3x3 convolutional filters, alternating between
squeezing and expanding. This has the effect of both reducing the total number of parameters in the
model and to add an extra learning step between these so called "fire modules."



3 Dataset and Features

For our dataset, we are using the the typed latex expressions collected by Deng et al. for their paper on
translating images to latex(4). This dataset consists of roughly 100,000 images of typed mathematical
expressions with their corresponding latex representation. We first attempted to use a dataset of
handwritten mathematical formulas from kaggle(10), but after some initial experimentation we found
that interpreting different handwritten versions of mathematical characters and then translating to
latex was too difficult a task at the moment.

Each image in our dataset is an A4 sized image with a typed mathematical expression towards the top
of the page, and comes with a corresponding latex expression. We preprocess the images by cropping
to just the region containing the mathematical formula using a program provided by Deng et al. (4).
The size of this cropped image can vary, but is generally much wider than it is tall. The length of
the latex expression also spans a wide range, with the maximum length of a latex expression being
941 characters. The dataset provided was already split into a train, dev and test set. The training set
contained 83870 examples, while the testing and validation sets each contained 10355 examples.

We found that using the entire dataset was prohibitively expensive computationally and limited our
ability to iterate and develop a model, so we decided to filter the dataset and only use examples
where the latex expression is under 80 tokens in length. This reduced our training set size to 66900
examples for our training set, and 8258 examples for our test set.

We split the latex expressions word based, and used the model to predict the following word in a
sequence. Using this model, our vocabulary contains 3583 words, including lowercase letters, digits,
and some special characters (including "{", "(", and "_" among others).
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Figure 1: Distribution of words in filtered training dataset

4 Methods

4.1 Overall Task

Our overall task is to try and recreate the LaTeX output from an image of a typed mathematical
formula. Since OCR model fails to represent spatial relationship between symbols and is limited to
recognizing separate symbols, they cannot be expressed and labeled in LaTeX format. Hence we
chose to focus only on utilizing the deep learning model. However, there are many complications
that arise when trying to take an input image and generate a LaTeX expression with variable length.
Following models and approach were found during literature study (4), and we decided to use a CNN
to reduce the input images to feature vectors, then pass those vectors to an LSTM encoder-decoder to
predict the characters making up the latex expression for the mathematical formula in the image.

4.2 Model and Approach

The current OCR models are not suited for the task since latex expression contains special symbols
which are not included in the OCR dictionaries and also there are some latex expression that are



corresponded to not only the symbols but also things like the relative position between symbols. For
example, in Figurthe expression \frac does not only correspond to a line but also the relative
position of the following symbols. However we want to use some of the concept of OCR. One
approach of the OCR model is Convolutional Recurrent Neural Network(CRNN). We want to use a
similar structure to build the model, so the model might be similar to photo captioning model which
will combine CNN and RNN models.
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Figure 2: Example Latex Expression

Our model consists of two main components. The first component is a CNN model which is meant
to extract features from the images of our mathematical formulas. The output of this CNN is then
passed to the second component of our model, which consists of a RNN using Long Short Term
Memory units. This part of the model takes the output from our CNN and attempts to convert it to a
sequence of latex tokens extracted from our training data set.

4.2.1 Baseline Model/initial approach

Our initial approach is to build a character level based prediction model. We break down the latex
expressions into single characters and try to generate sequence of characters from the latex image.
Because the model’s complexity depends on the maximum length of the output sequence, we filter the
training data and only focus on the expressions that have less than 50 characters. For the convolution
part of the model, we have utilize the pre-trained VGG model to extract the photo features. We loaded
and resized the photo to (224,224) and passed it through the VGG model. VGG model is a CNN
model that was developed for large-scale visual recognition. We load the model and remove the last
layer of the model which is used for classifying image. We are not interested in classifying the image
but we are interested in the internal representation of the image, which are the internal features. The
parameters and weights of the VGG model were pretrained and loaded from the internet. We used
this model to convert the images into vector of size (4096,) containing such features of the image.

The second part of the model is a sequence model and a feature extractor model followed by a decoder
model. We used ”?” as the starting symbol and ”@” as the ending symbol for latex expressions since
these two symbols are not commonly used in latex expression. The model we develop will generate
one character each time and the previously generated sequence will be used as input to generate the
next character. The starting sequence will be ”7” to start the generation and if ”@” is generated or
the sequence reaches its maximum length, the generation will stop. All the char are encoded into
integers for representation. The final loss function used is categorical cross-entropy.

4.2.2 Current Approach

Through discussion, we think it might be better to use a word-level model since there is only a limited
dictionary of words in latex and by using a word level tokenization, we can have more suitable
training examples. The filter that train on samples with less than 50 characters limits the size of
training set. And in addition, we have decided to build our own CNN layers since the input size of
the VGG model does not suit our image and resizing the image to (224,224) makes the image not
possible to be recognised by human. The VGG model was trained on images that are not relevant to
the current task, so we have decided to train our own CNN layers.

CNN Component The table|l{shows the specific hyper-parameters for our CNN model. The inputs
are padded and resized into the size of (500,100,1) and are input to the layers. The output of the
CNN layers will be the features extracted from the image and is later input into the second part of
the model. We tried to structure the CNN component of our model to closely mimic the architecture
used by Deng et al. (4) In some cases, we reduced the number of convolutional filters and increased
the stride in order to reduce the total number of parameters in our model and accelerate training. By
shrinking the output of the convolutional portion, we were able to significantly reduce the number of
trainable parameters in the following dense layer. The table below describes the layers used in our
final model.



Cov POOL
¢:256,1:(3,3) ,s:(1,3),bn Po:(2,2),s:(2,2)
¢:256,1:(3,3) ,s:(1,3),bn Po:(1,2),s:(1,2)
c:128.1:(3,3) ,s:(1,1) Po:(2,1),s:(2,1)
c:128,1:(3,3) ,s:(1,1),bn -
c:64,£:(3,3) ,s:(1,1),bn Po:(2,2),s:(2,2)
c:32,£:(3,3) ,s:(2,2) Po:(2,2),s:(2,2)

Table 1: CNN Layers. "c" is convolution layer followed by the number of layers, "Po" is max-pooling
layer followed by the filter size,"f" is the size of the convolution block, "s" is the stride size, "bn" is
batch normalization, the order of the filter is from bottom to top

RNN Component We have not change much for the second part of the model compared to the
baseline model. It is still a sequence model followed by a decoder model. This time we have decided
to use a word level tokenizer and the latex expressions are converted into arrays of integers. The start
and the end of the expression are padded with start_token and end_token to symbolize the start and
end of the expression. The general structure of the second part of the model remains unchanged. The
final loss function is still remained as categorical cross-entropy.

S Experiments, Results, Discussion

We evaluated our predictions using the Bilingual Understudy Evaluation (BLEU) score. This metric is
appealing because it is easy and efficient to compute on predicted sentences and is easy to understand.
The metric is calculated by counting the total number of matching n-grams between the predicted
and the actual sentence, regardless of position. If the predicted sentence contains all n-grams present
in the reference sentence, then it will have a higher BLEU score.

The metric also punishes predicted sentences that have more characters than the reference text. One
could imagine a case where a predicted translation contains all of the n-grams as the reference
translation, but is inaccurate because it contains many superfluous characters. Thus, to acheive a
perfect translation score of 1, a predicted sentence must contain all n-grams present in the reference,
with no extra characters.

In our first evaluation of our model, we used a very small training set (50 example images) with a
large latex maximum length ( 250 characters). With this model, our bleu score was disappointingly
(but not unexpectedly) 0. Further, it took a long time ( 30 minutes) to calculate a prediction for just a
single image. We then decided to filter the dataset and use only images whose corresponding latex
expression was under 50 characters. This sped up both the training of the model and the time required
to make predictions, allowing us to make predictions on 100 test images. On this test dataset, we
achieved an average BLEU score of 0.143, with a maximum score of 0.485 and a minimum score of
essentially 0.

These results were in fact worse than their low scores would suggest. After some further inspection of
the predicted latex expressions, we found that the model was repeatedly predicting the same character
(namely "). Since this is a fairly common character in most mathematical latex expressions, our
BLEU score was much higher than it should have been.

After adjusting our preprocessing methods and changing the architecture of our model, our BLEU
scores went down significantly. Our average BLEU score dropped down to 0.046, with a maximum
BLEU score of 0.077. These scores are still far from where we want them to be, and although they are
lower than our scores when using the VGG model, qualitatively the output more closely resembles a
real latex expression than the results of our VGG model. This is likely because of the changes we
made in preprocessing our latex, and choosing to split on latex tokens as opposed to characters.

In addition, the BLEU scores achieved by the VGG network were calculated on shorter sequences
(maximum of 50 characters), while our new architecture was tested on sequences with a maximum
of 80 tokens, where each token consists of some number of characters. This also explains some of
the decrease in BLEU score. Despite matching more characters accurately with our new model, the
extended length of the reference latex ensures that the ratio of matching characters to sequence length
is smaller, resulting in a lower BLEU score.



6 Conclusion / Future Work

Our model does not come close to achieving the results demonstrated by Deng et al. (4). We tried to
structure our model similarly to theirs, but one key difference is that we did not incorporate attention
in the RNN component of our architecture. By utilizing attention, we could ensure that each predicted
latex token is focusing it’s "attention" on the relevant part of the image, which could improve the
accuracy of our output predictions.

Nevertheless, it is unlikely that the addition of attention would improve our model from close to 0%
accuracy to almost 100% accuracy. We believe there may still be some issues with our preprocessing
of the data that could be preventing our model from making accurate predictions. A deeper analysis
of the inputs to our model could shed light on changes to our preprocessing steps that would increase
model performance.

7 Contributions

Each member of the team contributed equally to the final project. We "pair programmed" for the
entire project, and always made decisions as a group.
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