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Abstract

Every geothermal engineer needs to learn well log interpretation skills. A well
log is a series of measurements taken by various sensors along a wellbore. It is
one dimensional data taken along a depth axis (a “depth-series”), measuring for
example the temperature per depth. Like doctors, engineers need to look at these
logs to diagnose subsurface properties. For example, the locations where faults
intersect the wellbore (“feed zones”), the reservoir pressure, and the reservoir
temperature. I have implemented a multi-layered convolutional neural network to
automatically diagnose sets of temperature and pressure well logs. The algorithm
achieves results similar to those of a professional engineer. This algorithm enables
the interpretation of many well logs in just a few seconds.

1 Introduction

Geothermal energy is a renewable energy source that uses heat from the subsurface to generate
electricity. Operating a geothermal energy facility involves drilling into the subsurface, analyzing the
properties of the subsurface and then using that analysis to make important decisions regarding the
facility. One aspect of this analysis is interpreting well logs. A well log is a series of measurements
taken by various sensors along a geothermal wellbore. It is one dimensional data taken along a depth
axis (a “depth-series”), measuring for example the temperature per depth, see Fig. 1. In this study, I
have implemented an algorithm to automatically predict subsurface properties from the well logs
using a convolutional neural network. There are three inputs into the algorithm:

1. Temperature log, with shape (200, 1)
2. Pressure log, with shape (200, 1)
3. The derivative of the temperature log, with shape (200, 1).

There are five outputs from the algorithm:

1. Depth of feed zone 1.
2. Depth of feed zone 2.
3. Reservoir temperature.

4. Reservoir pressure.
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5. Depth of reservoir pressure.

A single example of inputs and output can be seen in the example well logs on the right in Fig. 1.
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Figure 1: (left) a sensor collects subsurface information from a wellbore. (right) An example of data collected
by the sensor as a function of depth (the log data) and the five characteristics determined by a reservoir engineer
based on the well data.

2 Related work

The task of this paper is identification of geothermal reservoir properties using neural networks. A
literature review has revealed no prior research on this particular task. A search of "deep learning" and
"geothermal" in Google Scholar yields no relevant results. The use of machine learning in geothermal
is mostly relegated to classical algorithms such as classification and regression trees, see for example
[1]. In general, the geothermal energy industry is relatively small in size and research budget and
therefore less research has been done on deep learning applications.

Well logs are also used in the oil and gas industry. Neural Networks have been applied successfully to
automated analysis of well logs for oil and gas applications. For example, estimating rock lithology
and permeability from well-logs [2, 3, 4, 5]. For a more complete summary of the applications of
neural networks in oil and gas applications, see Pulton [6].

Most of these papers, though, predict a "depth-series" output from a set of "depth-series" inputs. In
this work, however, the goal is to predict only five summary statistics that are dependent on both the
values and pattern of the data.

3 Dataset and Features

For this project, I have only 21 real well logs from my research site in Nevada (confidential location).
Therefore, I wrote an algorithm to create synthetic well data that mimics the real data (though it is
much less noisy). I used the algorithm to generate 10,000 training samples.

I split the data into three sets as follows:

e Training data: 10,000 generated (synthetic) temperature and pressure series, and temperature
derivative, of length 200. The data was normalized to have values between 0 and 1. Shape:
[10000,200,3].

e Validation data: 12 real sets of temperature, pressure and temperature derivative series, used
for hyper-parameter tuning. The data was resampled to be of length 200 and normalized to
have values between 0 and 1. Shape: [12,200,3]

e Testing data: 9 real sets of temperature, pressure and temperature derivative series, resampled
to be of length 200 and normalized to have values between 0 and 1. Shape: [9,200,3].



4 Methods

A convolutional neural network (CNN) is a form of a deep neural network that has gained attention as
Krizhevsky et al[7] used it to successfully classify images into 1000 different classes. CNNs include
a convolution operator as part of their framework and are particularly well suited for spatial data. The
kernel size of the convolution operator leads to neurons that perform calculations using only local
neighborhoods of pixels. In addition, the parameter sharing attribute of CNNs allows for a lower
number of parameters than having fully connected layers between all the pixels [8].

I have implemented a multi-layered neural network with the following architecture shown in Fig. 2.
The network has the following steps:

1. Input: takes as input three “depth-series” logs of temperature, pressure, and temperature
gradient

2. Initial Convolution Block: a block that has a one-dimensional convolution, followed by an
optional batchnorm, an activation function, an optional max pooling layer, and an optional
dropout layer.

3. Middle Convolution Block: a block that is identical to the previous one, except does not
take an "input shape" parameter. This block is repeated multiple times depending on the
value of the hyperparameter "number of convolution blocks".

4. Flat layer: a layer that is just a flattened 1D version of its input.

5. Fully connected layer: a fully connected layer with five variables: the depths of the feed
zones, the reservoir temperature, the reservoir pressure and the depth at which the reservoir
pressure is known.
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Figure 2: General architecture.

The cost function for this model was mean squared error. An additional recorded metric was the mean
absolute error. The optimizer algorithm used was Adam, and the learning rate had an exponential
decay. The algorithm recorded the model state that had the lowest mean absolute validation error.
This early stopping is a form of regularization to avoid over-fitting. The architecture was implemented
in Keras [9] with a TensorFlow backend [10].

5 Hyper Parameter Fitting

There were 25 possible values for the architecture presented in the above section. Therefore, I wrote
an algorithm to sample 200 random combinations of the hyperparameters. I then used the validation



errors from those realizations to test the sensitivity of the hyperparameters to the error level and help
fine-tune the hyper parameter search. I calculated the sensitivity using distance based generalized
sensitivity analysis [11], and the results of that analysis are shown in Fig. 3(left). The results show
that the most important parameter is the number of convolution blocks. The right side of Fig. 3 shows
that a higher number of convolution blocks can significantly lower the validation error. Based on
these results, another two hundred realizations were run with a higher possible number of convoltion
block. In the end, the best model, with the lowest validation error, had four convolution blocks, *valid’
padding, and an initial kernel size of 12.
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Figure 3: (left) Sensitivity of the validation mean absolute error to the hyper parameters. (right) Influence of
the number of convolution blocks on the validation mean absolute error.

6 Results

The best model found during the process of hyper parameter tuning was used to predict the reservoir
characteristics for the validation and testing data sets. Fig. 4 shows the best prediction result and the
worst prediction result by this model. As can be seen, the best result almost completely overlaps with
the true data.
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Figure 4: (a) The best and (b) worst prediction by the chosen model.

The training, validation and test errors for the chosen model are shown in the table below. These
results shows that there is still some improvements to be made in the algorithm. The bias is fairly
low and does not need much improvement. There is a significant gap between the testing error and
validation error. The hyper-paramer tuning process seems to have slightly overfit the the validation
data. The gap between the tranining and validation error is not due to overfitting of the training error
but rather to a dissimlarity between the smooth training data and the more noisy real data. This was
checked by creating an additional training-validation set composed of unseen training data. The
model performed well on the training-validation set.



Training Error | Validation Error | Testing Error
0.008 0.020 0.030

Table 1: Training, validation and testing error.

7 Future and Current Work

After performing error analysis, I saw that many of the errors of the algorithm occurred in well
logs that were slightly ambiguous even to professional engineers. An engineer could give several
acceptable answers to some of the data. Therefore, I decided that the CNN algorithm should also be
able to provide several possible answers. If one of the possible answers predicted by the algorithm
was the true answer, then the prediction would be counted as correct. I started working on the above
suggestion, using a similar architecture as that presented in the Methods section above. However,
instead of a fully connected layer in the end with five properties, there are several possible outputs
that branch out:

1. An output that detects the first feed zone. This output layer is a (200,1) layer followed by a
softmax activation. Turning this into a classification problem.

2. A similar output that detects the second feed zone.

Similar to Google Maps, the algorithm then suggests feed zones with the highest post-softmax values,
but chooses only the highest value in any given neighborhood. This is the custom validation metric:

e Run a window with a certain kernel size along the softmax output. The window keeps only
values that are the highest within the window. This makes sure that the suggested feed zone
locations are not too close to each other and don’t overlap.

e Find the maximum value from the softmax output. Then, only keep the values that are more
than a threshold times the maximum.

This algorithm can lead to a prediction of only one feedzone in case the softmax output strongly
indicates only one location. When the softmax output has several high value candidate locations,
then the results present several of the high value candidate locations so that the engineer can choose
amongst them. Fig. 5. on the right shows an example of relative confidence of the algorithm in the
solution, providing only two interpretations. In Fig. 5. on the left, the algorithm suggests many
interpretations. This method will allow for a semi-automated approach: the algorithm solves the easy
scenarios, and provides possible solutions for the complicated scenarios.
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Figure 5: A CNN model that provides multiple predictions for the input.



8 Contributions

Single team member. No outside contributions except for helpful suggestions from the TA Jay Whang
and my adviser.
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