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1. Introduction

Depth prediction has been a problem as old as computer vision in computer science. The goal is to create a depth
map based on single or multiple RGB image inputs. More specifically, given only the input of a standard RGB
camera on mobile devices, i.e. mobile phones, tablets, etc, without extra inputs like depth sensor or stereo cameras,
we would like to explore how to predict an accurate enough dense point cloud that represents the 3D geometry of
real world topology. This topic is of great interests for real-world applications in augmented reality, automatic
driving, robotics, 3D scanning, etc.

In this paper, we would like to demonstrate further performance improvement by using serial pictures taken for the
same scene. As compared to past literature that also uses multiple images for prediction, we will experiment with
modifying existing CNNs built specifically for monocular depth prediction.

2. Related Work

The initial solution to depth prediction was spatial triangulation based on pairs of consecutive pictures and camera
poses (Szeliski, 2011). Current state of art literature predicts with single RGB image input, namely, monocular depth
prediction. With the development of Convolutional Neural Networks (CNN), we have seen deep networks such as
AlexNet and ResNet used to solve the depth prediction problem (Laina, Rupprecht, Belagiannis, & Tombari, 2016).

3. Dataset

ScanNet is a large RGB-D video dataset consisting of 2.5M images with semantic segmentation (Dai, Chang, Savva,
Halber, Funkhouser, & NieBner, 2017). This dataset consists of 1,513 scenes of 707 unique indoor environments
with estimated camera parameters, surface reconstructions, textured meshes and semantic segmentations
provided,captured using the Microsoft Kinnect v1. Each video scene has a large number of images focussed on the
same room captured through varying camera angles. Figure 1 shows images that belong to the same scene. These
images can be potentially combined in some form to provide the network more information about an object that can
assist with its depth prediction. The diversity of spaces in the dataset and the instance-level semantic category of
labels available made this dataset a natural choice for our problem.

3.1 Preprocessing

The dataset is shuffled and divided into batches before feeding into the network. In this analysis, we extracted 100
scenes from ScanNet and divide them into a training set of 400 images and a validation set of 100 images.

Figure 1: Examples of input images from the same sequence




4. Methods

Convolutional neural networks consist of a contractive part that progressively reduces the dimension of the input
image through successive convolutional and Maxpooling layers.

4.1. Architecture 1 - Base Line

In [1], ResNet-50[4] is utilized to down-sample RGB and reduce its the dimension from [304x228x3] to a feature
map of 10 X 8 X 2048. ResNet-50 utilizes skip connections that help mitigiate the problem of vanishing gradients
that help neural networks become deeper.At this point, the FCRN(Fully convolutional residual network) utilizes
upsampling and up-projection layers(upsampling layers with skip connections) to increase the dimension of the
vectors to 160x128x1 , producing a depth map. The FCRN model was trained on the NYU dataset, which consist of
indoor images similar to the ScanNet dataset. Therefore, we use the pre-trained weights the authors provide to make
our baseline predictions on the ScanNet dataset.

We experiment with two architectures that make use of multiple input images to increase the receptive field and
capture more global information. Figure 2 sets out details of the baseline model.

Figure 2: Network Architecture proposed by Laina et. al. (2016)
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4.2. Architecture 2 - Stacking/Concatenation

Projection

The idea of utilizing concatenation to increase the receptive field is discussed in literature. Rather than concatenating
along the height or width of the image, we concatenate along the channels. The input images that are to be
concatenated are first passed through the pretrained ResNet-50 layers, utilizing transfer learning and the vectors are
extracted prior to the upsampling network. These images are concatenated along the channels axis. The dimension
of the image at this layer grows from 10 x 8 x 2048 to 10 x 8 x (2048xn) , where n is the number of images we
concatenate with and is tuned as a hyperparameter. The upsampling and up-projection half of the network
architecture is kept the same as in our baseline architecture with the number of 1x1 convolution layers tuned as
another hyperparameter. This network will be re-trained as there are (2048 x n) additional parameters to be learnt.

4.3. Architecture 3 - Average Pooling

In addition to concatenation, we have also explored another way of predicting depth from multiple images by
averaging the value of corresponding pixel from each input image. The concatenated image will have the same



dimension as each of the input image. The structure of the up-sampling layers are the same as our baseline
architecture with parameters re-trained.

Figure 3: lllustration of Architecture 2 and Architecture 3

Architecture 2. Concatenation/
Down-sampling Architecture 3. Average pooling Up-sampling

3 Input e e I e — ;
| 304x228x3 ]

R JEN BN . g |
| 304x228x3 I N >

- Prediction
160x128

~

g
° |
P mpt 8 & . B
| 304x228x3 g
! e |
| b \
o

Dimension: 76x57x64 10x8x2048 Concatenation: 10x8x2048xn  10x8x1024 20x16x512
Average pooling: 10x8x2048

5. Loss function/Optimization/Batch Normalization

In our analysis, we used the standard loss function, L,-loss, and minimized the sum of squared distances between the
predicted depth map and the ground truth for each pixel. In terms of optimization algorithms, we started off with
Gradient Descent and expanded to Momentum and Adam optimizers. Based on performance on our data set, Adam
optimizer turned out to be the best among all three options. When training Architecture 2, 3 and 4, we have also
applied the batch normalization technique.

6. Metric for evaluation

The metric we use for evaluation of different models is the mean square error validation error. This is obtained by
computing the mean square error between the ground truth label and the prediction for every pixel and averaging it.

7. Results and Discussion

7.1 Model evaluation

Based on our results on the current dataset, Architecture 2, which utilizes concatenation of 5 images performs better
than the baseline model and marginally better than the average pool architecture. We believe that concatenation of
images over the channels axis leads to improved feature selection as opposed to averaging of pixels. We use this
architecture to conduct further hyperparameter tuning experiments shown in Figure 6.



Figure 4: Depth map prediction on an example scene
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Figure 5: L ,-loss on training set
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Figure 6: L,-loss on validation set
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7.2 Hyper-parameter tuning

Figure 7: Hyper parameter tuning performance

Models L2-loss (validation)
Architecture 2 1.8
3 images concatenated with no additional layers 2.3
5 images concatenated with two additional Ix1 convolution layers 1.9




7.2.1. Number of layers in the upsampling network

After stacking 5 images, channels dimension increases by 5 times. This implies up-sampling architecture from Laina
et. al. (2016), there is a 90% reduction of dimension from 10,240 (=2048*5) to 1,024 after one 1x1 convolutional
layer. Our hypothesis is that prediction accuracy may be compromised by such sharp reduction in dimension, or
inflexibility of neural network. Therefore, we have experimented with adding one or two extra layers right after
image stacking so that channel dimensions are reduced more gradually, namely, from 10,240 to 4,096 and then from
4,096 to 1,024.

It is observed that increasing the number of layers only leads to a marginal improvement in the mean square loss
over simple concatenation. We believe this model needs more training.

7.2.2. Number of images that are concatenated or averaged over

Increasing the number of images that are concatenated can prove beneficial depending on the number of images in
the dataset from the same sequence. Combining dissimilar images on the other hand will lead to the network losing
information about the frame and should cause a drop in performance. The Scannet dataset has more than 10 images
that look very similar to each other taken from different camera angles. Based on intuition, increasing the number of
images that are concatenated from 3 to 5 should help improve performance and this is observed experimentally.

8. Conclusion/Future Work

Due to the small training set size, overfitting was observed. This was mitigated through the early stopping technique
by stopping training when the validation error starts increasing. We would like to train the model on a much larger
dataset to avoid the problem of overfitting. In our future research, we will also consider experimenting with other
loss functions, e.g. the reverse Hber (berHu) loss, which was used by [1]. As next steps, we will use a larger training
set and implement regularization methods like inverted dropout for further training of the up-sampling and 1x1
convolution layers.

We would also like to explore different ways to combine images from the training set as we have access to many
images from a single scene. These images can be combined in different ways such as concatenating every alternate
image or every 5 images as a means to introduce more variation in our series of iand capture more information.
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