CS 230 - Final Project

Knowledge base construction from richly formatted text using Fonduer: Applications to
financial reports

Roberto Seminario, Andrea Aguirre
rseminar @stanford.edu, andreaar @sranford.edu

1. Introduction

Financial reports of publicly listed companies are used all over the world to make important decisions.
However, there is a lot of discretion on how companies chose to disclose information, or how to present it
in their filings. Financial analysts spend long time scavenging for hard to find information. In this context,
designing a tool that automatically extracts financial information from SEC filings could revolutionize the
way it is processed and extracted. But, this is not simple.

Knowledge base construction (KBC) is the process of populating a database with information extracted
from unstructured data. Relevant progress has been achieved with simple text, but less work has been
done with richly formatted data. It is inherently more challenging because the attributes and relations are
expressed in a combination of textual, structural, tabular and visual signals. We developed an application
for Fonduer, a machine learning based KBC system for richly formatted data that was developed by a
group of Stanford professors and PhDs.

We parse html documents and convert them into hierarchical data models. We then create rules (regEx,
dictionaries, structural) to preliminary identify pairs of [date, revenue] mentions, called candidates, that
will fill the database. Then, we label the potential data candidates and determine marginal probabilities
for each pair through weak supervision (data programming and labeling functions). Lastly, we train a
model to compute the marginal probability of a candidate being a “True” relation.

2. Dataset / Processing

We have downloaded 2,007 html-formatted quarterly reports (SEC’s 10-Q forms) of publicly traded
companies. This data corpus is comprised of 3 million sentences, more than 60 million text spans and
~300,000 tables. The corpus is organized in a hierarchical data model with tabular, visual and HTML
metadata and stored in a PostgreSQL database. We have randomly divided the data in three parts: a
training set (70%), a development set (15%) and a test set (15%).

The Fonduer pipeline and data preparation

Our objective is to find the correct mentions of companies’ revenues (‘revenue mention’) and their
respective time period (‘period mention’). Since there are over 60 million words in the corpus, the
combinatorial potential of all pairs is over 3.5e+15. It is unfeasible to train a model this size. To tackle
this, we defined hard-filtering functions called matchers that set forth the criteria to select the correct
mentions. Matchers are logical, tabular, format, content, linguistic, and RegeX rules that eliminate text
spans in the data corpus from being considered as mentions. We developed six revenue matchers and two
period matchers (see Figure 1 for example matcher rules).

Figure 1. Selected matcher rules

Revenue |Integer matcher If the first character of the text span is an integer, return True
Revenue |No_whitespace_matcher If the text span has no whitespace, return True

Revenue |Row_has_revenue_matcher If the text span’s row has a revenue-related word, return True
Period Period_dict_matcher If the span has a format similar to “Month Day,” then return True
Period In_table_matcher If the potential mention is contained within a table, return True

CS 230 - Final Project

Generating candidates

Matchers provide an initial set of mentions (27,977 period and 14,802 revenue) that combined together
span a total of 414 million potential candidates (pairs of mentions). To avoid this combinatorial
explosion, we used a hard filtering function that acts on candidates rather than on mentions (a throttler).
By using a throttler we forced both mentions in a candidate to belong to the same table and end up with
17,217 candidates.

We measured the quality of the candidates by analyzing the recall of the hard-filtering process. Out of the
true candidates, our data pre-processing identified 92% of candidates. For an initial setting, this recall is
high enough; however, targeting 99% would be desirable in real life applications.

3. Model
Labeling functions

Although the number of candidates has been reduced from 3.5e+15 to 17,217, they still lack labels. To
label the data, we apply weak supervision using the snorkel data programming framework (Alexander
Ratner, 2017). The idea behind weak supervision is that it’s better to have 100k noisy labels (that are 60%
accurate) than 1k true labels (that are 90% accurate). To apply the Snorkel framework, we create labeling
functions that, unlike hard-filter rules, are used to model a probability that a particular candidate is true.
We included 14 labeling functions that tried to impart the heuristics of what represents a typical revenue
and period figure in a financial statement: 1) it is located in the first pages of the document, 2) it is early
in a table, 3) its table contains words like ‘revenue’ ‘costs’, ‘net income’, ‘taxes’, etc, 4) the text spans
above the table typically contain words like ‘income statement’, 5) the revenues figures are not too short,
6) the tables where revenues are located tend to be large tables, etc.

“In data programming, we learn the accuracies of the labeling functions (LF's) by observing their
agreements and disagreements with each other; we then use the predictions of this generative
model as noise-aware training labels.” (Ratner, 2017)

All these labeling functions are fed into the Fonduer labeler module which builds a matrix of labeling
outputs of shape [candidates, # labeling functions] which is then fed into a GAN that models 1) the
propensity of the functions to label data and 2) the correlation between labeling functions to generate a
probability. These probabilities are then the ‘labels’ we use to train a model

Figure 2: The generative model used by Fonduer to generate marginal probabilities

label matrix A, is encoded in a generative model

Lab
¢ij (AY) =1{Ai; # 0} pw(A, Y) using three factor types, representing the

2°(A,Y) = 1{Ai; = v} labeling propensity, accuracy (not used because we
$SIT(A,Y) = 1{As; = Ain} didn’t input true labels:), and pairwise correlations
of labeling functions
" The vector ¢ is the concatenated vector of the
Puw(A,Y) = Z," exp (Z w” ¢i(A, yz‘)) factors described above, w is the weight matrix and
i=1

Zw-1 is a normalizing constant
W = arg min — log Z Pu(A,Y) We opt?mize w with respect to the log loss of the
“ Y probability compared to the noisy label to optimize

CS 230 - Final Project

We also developed a set of alternative custom marginal probabilities. To compute these, we created a
function that calculated a score for each candidate based on the true/false values that each labeling
function outputted. However, we didn’t take into account correlations between labeling functions (AS
Fonduer does). To account for differences in scoring levels between documents, and considering that each
document needs to have an output (revenue and date candidates), we normalize the scores per document.

When deciding between a matcher/throttler (hard-filter) and a labeling function (soft-filter), we face a
trade-off. By applying hard filters, we reduce the size of the data but we risk sacrificing the model’s
recall. It was a trade-off between computational feasibility and a more robust/generalizable model that
learns as opposed to operate with hard filtering rules.

Model training

We created a feature vector that takes into account several dimensions of information for each candidate:
one-hot vectors of surrounding words (including combination of words), style features (font, size, bold,
caps, etc.), NLP structure, length, lemma sequences, row and column headers, table characteristics, page
location, object hierarchy, html tags, and others. Our input vector has 107,000 features. There is a linear
increase in the number of features as the size of the dataset increases. This is mainly because the spans of
text surrounding revenue figures tend to be other numbers which differ in every document, so they need
to be encoded as one-hot vectors each. Plus, every document has its own set of particular combinations of
numbers which are rarely repeated in other documents.

With the set of features, and the weak labels, we ran different model specifications. We tested different
structures and saw performance improvement by including additional layers. However, after adding too
many layers, the model began overfitting and F1 performance on the dev set suffered. We also tested our
custom marginal and compared its performance with Fonduer’s labeling. We found that the labels
generated by Fonduer were superior to our own custom marginals. Finally, with 2-4 hidden layers, the
model seemed not to overfit, but as more layers were added, performance in the development set was
affected.

4. Results

To measure the model’s performance, we extracted a set of true labeled period-revenue pairs from Capital
IQ, a provider of financial information. By doing this, we are able to test the true performance of our
model and not only its performance under the noisy labels generated by weak supervision.

As the model estimates marginal probabilities, we had to choose a threshold to classify labels as True or
False. Using a unique threshold to cut off values across different documents implied that for certain
documents, no single candidate was labeled as True, which is incorrect. Ideally we would’ve used a bias
term for each document to account for the differences between documents. However, this defeats the
purpose of the model, which is to generalize well on previously unseen documents. To force having True
labeled candidates, we then implemented a threshold selection by document. After testing multiple
iterations we found that choosing the top 10 candidates with the highest marginal probabilities as True
yielded the highest F1 performance.

The best performing model in terms of recall was the neural network with the smaller structure. While the
best performing model in terms of F1 score was the neural network with larger structure. Overall, the
performance was similar in both models as shown below

CS 230 - Final Project

Figure 4: Cross Entropy loss by epoch in the training set Figure 5: Performance metrics
0.7 A Larger NN Development Test
Accuracy 33.8% 35.7%
0.6 - Precision 24.8% 28.0%
Recall 95.3% 87.8%
05 - F1 score 39.4% 42.4%
[200’ 20] Smaller NN Development Test
04 - Accuracy 27.2% 31.0%
[1000, 100, 300, 10] Precision 23.2% 27.2%
0.3 ' T ' ' T ' Recall 96.3% 92.8%
0 5 10 15 20 25 EpOChS F1 score 37.4% 42.0%

We also compared the performance of our custom labeling functions with those generated by Fonduer.
Our custom marginal considerably underperformed the marginal probabilities generated by Fonduer.
While the cross entropy loss of the model trained with our custom marginal reached 0.6, the model
trained with Fonduer’s marginal reached a loss of around 0.35.

Figure 6: Founder marginal Figure 7: Custom marginal Figure 8: cross-entropy loss using different
histogram histogram marginal functions

000 0.7 S— Fonduer marginals
. 06
2500 O.S .
w00 Custom marginals
1500 0.4
n O . 3 T T T T T

0 5 10 15 20 25 Epochs

Finally, to determine whether we were overfitting our data, we compared the performance of our model in
the training set and the development set. Although performance was generally better on the training set,
the performance differential was low, suggesting that our model is not overfitting.

Figure 9: Performance on train set
100%

75% B Train MDev
50%
25%

0%
Accuracy Precision Recall F1 score

5. Conclusions / Expansions

The task of getting accurate labeled candidates among the explosive initial amount of datapoints was a
more challenging task than we expected. But through a combination of hard filters and weak supervision,
our model was able to pinpoint a handful of revenue and date candidates out of billions of potential pairs.
After testing different options for our model, the F1 performance obtained was around 40%. Comparing
with the baseline performance of 0% for the broad dataset and 20% for the filtered one, we consider that
the performance is decent. However, more than half of the model’s performance was in the hard-filtering
portion (20%). Hence, as a potential expansion of the model, we could try fewer hard filters and train the
model with more candidates (over 1mm ideally). Another potential expansion, to avoid computation
unfeasibility, is to trim the features from 107,000 to less than 10,000. As currently, some of the feature
vectors are very sparse. Overall, we believe that creating a structural model of financial data is
computationally inefficient for a task like this. It is possible that table and page extraction based on
heuristics paired with a machine learning model would be more efficient.

CS 230 - Final Project

Members contributions

Roberto Seminario: set up and management of AWS’s EC2; creation of PostgreSQL database, definition
of matchers and labeling functions, definition of custom marginals, code of neural network model, run
iterations of model

Andrea Aguirre: definition of matchers and labeling functions, run iterations of model, prediction
classification, performance metric evaluation

References

[1] Sen Wu, Luke Hsiao, Xiao Cheng, Braden Hancock, Theodoros Rekatsinas, Philip Levis, and
Christopher Ré. 2018. Fonduer: Knowledge Base Construction from Richly Formatted Data. In
Proceedings of 2018 International Conference on Management of Data, Houston, TX, USA, June 10-15,
2018 (SIGMOD’18), 16 pages.

[2] Alexander Ratner, S. H. (November 2017). Snorkel: Rapid Training Data Creation with Weak
Supervision. Stanford University.

