Compare Different Model’s Performance on Breaking
CAPTCHA

Haotian Sun, Jiaying Li, Yutong Zhang
Stanford University
{htsun, jiayingl,yutongl6}@stanford.edu

Abstract

CAPTCHA s are widely used to secure the web system in current days. We con-
ducted several tests on the most general type of CAPTCHAs that contains numbers
and letters to study if the the deep learning model can simply break them. We used
the image segmentation approach as the first step in our training, but we realized
that the 4-character image with overlapping and rotations can be hardly detected
correctly. Later, we used end-to-end learning and conducted several Convolutional
Neural Network models in our study, including Simple CNN, VGG-16 and ResNet,
and we reached an accuracy for more that 80%. The results show that a large
training dataset is one of the major feature that will determine the performance of
the training model. The complexity of dataset will burden the classification process
as well.

1 Introduction

Nowadays, many people use computers to make bulk fake ID registration in system. To prevent this
attack, CAPTCHA, a figure, including multiple letters and numbers that occluded with noises and
curves, is eveolved. It is interesting to know how well the deep learning will perform on breaking
these CAPTHCAS. Our goal is to identify the characters in generated CAPTCHA figures by training
computers with neural network models, which is a process of translating figure in png format to a
string with the predicted characters. The input to our algorithm is RGB matrix for the figure, with
shape 140x80 (width x height), and the label for a figure is a 62 x n multi-hot vector (n=#characters).
We used the following model to conduct the different training processes: Fully Connected Neural
Network(FC), Simple CNN, LeNet with Segmentation of Image and Revised VGG-16. In order to
further study the training performance under different difficulty of CAPTCHA, we prepared several
different datasets and made multiple tests.

2 Related work

Currently the common method to break the CAPTCHA is to use CNN with active learning, which is
an end-to-end approach. Fabian Stark et al. [1] discussed how to choose the new samples to re-train
the network and present results on an auto-generated CAPTCHA dataset. Dongliang Xu et al.[2] also
propose to use active learning to address the problem of the lack of initial data of CAPTCHA. Ye
Wang et al. [3] have provided another solution to solve the problem. They present a self-adaptive
algorithm to segment different kinds of characters optimally, and then utilize both the existing
methods and their own constructed convolutional neural network as an extra classifier. Moreover,
Tam J. Goodfellow et al. [4] discussed their success in aiming high prediction accuracy by using 5
convolutional layers in their model, and they suggested that 8 layers might have a better performance

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

(a) No Rotation and No Overlap (b) With Rotation and Overlap

Figure 1: Examples of Data with Different Difficulties

for the CAPTCHA detection for their dataset. Also, another way to break the CAPTCHA is using
some data preprocessing methods to clean the data, as mentioned in Jeff Yan et al.[5]. Another relavant
work that used the segmentation method is done by Adam Geitgey [6]. However, the implementation
that he made will be hard to get high accuracy on our dataset, since the noises and curves will impact
the detection of contour as described in [6].

3 Dataset and Features

Datasets are generated from a python package called captcha[7]. This package can automatically
generate png format image in RGB (3 channels). We changed several parameters that controls the
rotation, warping, and overlapping of characters in the source code. The ratio for training, validation
and testing sets is 10:1:1, which is 10240, 1024 and 1024 data in each set. The characters that we
used are numbers from O to 9 and letters from a-z and A-Z in font DroidSansMono. Dots and curves
are added to the figure with the internally implemented PIL package in captcha[7]. The labels are in
the size of 1xnx62 as multi-hot vectors.

For the test of Fully Connected Neural Network, a data preprocessing phase is used to transfer the
RGB matrix into gray scale. For the test under LeNet model, we segmented the single png figure
into seperate images. Moreover, to see if the model can have a better performance when images are
in grayscale, we prepared a comparison of output between grayscale dataset (1 channel) and RGB
dataset (3 channel) for the VGG-16 Revised Model.

“ | FCNN Seg+LeNet Simple CNN VGG-16 Revised ResNet “
Image Size 64x64 128x64 140x80 140x80 140x80
Input Size 64x64x1 128x64x3 140x80x3 140x80x3 140x80x3

Data Format RGB RGB RGB RGB RGB
of Classes 62 62 62 62 62

of Characters (n) 4 4 4 4 4
Rotation Degree 0,0 -30, 30 -60, 60 -60, 60 -60, 60

Overlap 0 0 0.2 0.2 0.2
Warp 0 0 0.3 0.3 0.3

Level of Difficulty Easy Medium Hard Hard Hard

Table 1: Data Used in Each Model

H RGB Dataset with VGG-16 grayscale Dataset with VGG-16 Revised H

Image Size 140x80x3 140x80x3
Input Size 140x80x1 140x80x1
Data Format RGB grayscale
of Classes 62 62
of Characters (n) 4 4
Rotation -60, 60, -60, 60
Overlap 0.2 0.2
Warp 0.3 0.3
Level of Difficulty Hard Hard

Table 2: Same Model with Different Dataset Difficulties

4 Methods

4.1 Loss Function

The function that we used to penalize our predictions from model is cross entropy (CE) loss:
CrossEntropyLoss = Z(—y xlog(p) — (1 —y) *log(1 — p)) (1)

Since we have 62 classes of outputs, we will use the softmax activation functions in our model for
classification.

4.2 Fully Connection Neural Network

We designed our baseline model using a fully connected neural network with 5 hidden layers. The
input is a 1024x1 vector and the output is a 62x1 vector. We added sigmoid and softmax activation
functions to improve the non-linearity of our model. Original input values are divided by 255 to be
limited between 0 and 1. This model is only used to test the performance of FC on single character
detection for CAPTCHA.

4.3 LeNet Plus Segmentation

Input
64x128

Segmentation
Based on Pixel

qure
Density Classification
! v
Output
Input Predicted
Single Char String

[E—

N
Segmented
Fil

ISR

Figure 2: Segmentation Model (Left: Logic of the Model; Right: Sample with its Pixel Density)

We used LeNet-5[10] to train our generated single letter with the only change in the number of output
from the original model, 62 classes. Our training size is 62 classes with 1000 per class, with image
size 64*64. We resize the image to 28%28 and convert the image from GDB to grayscale. We formed
an algorithm for our segmentation process. Our input image contains four characters, and the size of
image is 128*64.

We convert the image from GDB to grayscale, and then we count the total number of pixels that are
different from the background pixels in each column and sum up every 16 columns’ count into a
trunk. We set a threshold value from experience. For each trunk which is less than the threshold(900),
we choose the min_column (column in that trunk with lowest counts for not-background pixels) as
segmentation border for one piece. We processed the segmented pieces with the same method again.
If the pieces are larger than 4, we combine two consecutive pieces with minimum sum of trunk values
until we get four pieces. If the pieces are less than 4, we segment the piece with largest trunk value
evenly along the horizontal axis. Finally, we get four pieces of single character for each image.

4.4 VGG-16 Revised (RGB and Gray Scale) & Simple Convolutional Neural Network

s e
Figure 3: Architecture of VGG-16 Revised Network

We used a revised VGG-16[9] network for our test under different datasets (image in RGB and
grayscale) in separate training processes. This CNN concatenates four stacks of Conv2D(ReLu) with
max pooling layers and 2 fully connected layer(ReLu) by the end to generate a 1 x 248 dimension
output as shown in Figure 4. Batch Normalization and dropout are applied as regularization during
the processes, and the model is rely on Adadelta Optimizer from Keras[14]. Also, we tested a
performance by deducting two stacks of Conv2D+MaxPooling, and called it Simple CNN.

4.5 ResNet

cwony, 128,72

34

(

Figure 4: Architecture of ResNet50 [15]

We tried to use a ResNet-50[8] to compare with VGG-16. One of the biggest advantages of the
ResNet is while increasing network depth, we can also get a fast training and high accuracy. Since
ResNet requires a squre input, we change our input size into 140x140 instead of 140x80. The results
of comparison amoung different networks are shown in Figure 5.

5 Experiments/Results/Discussion

FC NN | LeNet + Segmentation | Simple CNN | VGG-16 Revised | ResNet50
Mini Batch Size 32 128 32 32 32
Dropout 0.7 1.0 0.25 0.25 0.7
Learning Rate 0.001 0.001 0.001 0.001 0.001
Optimizer Adam SGD Adadelta Adadelta Adadelta
Epoch 60 50 60 60 60
Loss Function CE CE CE CE CE
Test Accuracy | 2.92% < 1.00% 46.88% 85.16% 81.29%

Table 3: Hyperparameters and Results for Each Model

Loss Versus Epoch for All CNN Models

2% VGG-16 Revised Loss for Epoch 60: 0.6033

VGG-Grey Loss for Epoch 60: 0.5462

Simpie-CNN Los

Epoch 60: 2.0358
ResNet Loss for Epoch 60 0.3511

LeNet Loss for Epoch 50: 0.0701

10 20 30 40 50
Epoch

Figure 5: Loss for All CNN Models

In our experiment, we first used our own segmentation algorithm to process the images. Since
the segmentation result can be only checked manually, we test 10 images(40 characters). The
segmentation accuracy for these 10 images is 86%(single character). Then we use our generated
single letter data(64*64) to train model and get 99.31% accuracy and 0.0701 loss after 50 epochs.
However, when we use our single character data extracted from the our formed segmentation,
the accuracy is lower than 20%. The test accuracy is lower than 1%. So we decide to jump to
next approach. The reason for the poor performance can be attributed to the resize process and
segmentation algorithm. After resizing them to same size as input, the deformation for each single

@

Ul

2 » © B @
Epoch

2 E) © E @

(c) Accuracy of Revised VGG-16 with - -
grayscale Input (d) Accuracy of Simple CNN Model

Figure 6: Examples of Data with Different Difficulties

character is different. Then it is hard to get high accuracy from trained model.Also, the formed
algorithm is not perfect for largely overlapped and not perfect for images with many arcs and noises.

For the end-to-end approach, we built a basic CNN first and modify the VGG-16 and ResNet-50[16].
In Figure 7b, the training accuracy reaches 90% after 60 epochs of training. But the validation
accuracy fluctuates much during the whole training process. In Figure 7a, the training accuracy
increases to 90% in 10 epochs and finally reaches 95% after 60 epochs. The fluctuation of validation
accuracy relatively decreases and becomes smaller than that of a simple CNN, as VGG structure can
extract more feature from the input image. Because of the overlapping and rotation of characters,
it’s consequent to deepen the network to explore more hidden and undeteced features. We get a
highly improved performance on our revised VGG-16 with grey sacle image as inputs. The training
accuracy approaches to nearly 98% and the validation accuracy tends to become steady after 40
epochs. We use a grey scale input because of the low importance of color feature in a CAPTCHA.
Then we use ResNet-50 to train on the RGB dataset. The loss decreases rapidly in the first 10 epochs.
And the validation accuracy becomes steady after 30 epochs and reaches 90% in the end. For the
fluctuation of accuracy during validation, we could shuffle the data after each epoch to reduce the
fluctuation. And because of the characteristic of Adadelta, the validation accuracy tends to fluctuate
when it is converging. We could try to use Adam to reduce the fluctuation. The gap between the
testing accuracy and training accuracy may be caused by the limited scale of our dataset which could
be improved in the future.

6 Conclusion

In this project, we used different models of neural network to break the CAPTCHA and compare
the performance of those models. We firsted did the recognition of single character and try to
use segmentation to process the multi-character CAPTCHA. Then we used end-to-end training
based on VGG-16 and ResNet-50 to get a better performance with the best test accuracy of 86.28%.
Considering the room for improvement of our result, We thorougly analyzed the error and would
improve our work in the future.

7 Future Work

We will first increase the size of our dataset to tackle the overfitting problem in our task. In addition,
We will conduct transfer learning for other type of CAPTCHAS, and see how the transfer learning can
support in character detection. We also plan to study the value of training models for nature character
detection prepared with artificial occluded data. Furthermore, we will try to implement some data
preprocessing to remove the noise dots and curves from the image.

8 Contributions

Yutong Zhang Developing segmentation algorithm and doing single character classification
Jiaying Li: Building datasets, preprocessing data and data analysis of the experiment.

Haotian Sun: Building basic CNN, modifying VGG-16 & ResNet, models training and testing.

References

[1] Stark, F., Hazirbas, C., Triebel, R., Cremers, D. (2015). Captcha recognition with active deep learning. In
GCPR Workshop on New Challenges in Neural Computation (Vol. 10).

[2] Xu, D., Wang, B., Du, X., Zhu, X., Yu, X., Liu, J. (2019). Verification Code Recognition Based on Active
and Deep Learning. arXiv preprint arXiv:1902.04401.

[3] Wang, Y., Lu, M. (2018). An optimized system to solve text-based CAPTCHA. arXiv preprint
arXiv:1806.07202.

[4] Goodfellow, 1., Bulatov, Y., Ibarz, 1., Arnoud, S., Shet, V.(2013). Multi-digit Number Recognition from
Street View Imagery using Deep Convolutional Neural Networks. arXiv: 1312.6082.

[5]Jeff Yan, Ahmad Salah E1 Ahmad. 2008. “A Low-cost Attack on a Microsoft CAPTCHA?”, the 15th ACM
conference on Computer and communications security, 543-554

[6] Geitgey, A., (2017). How to break a CAPTCHA system in 15 minutes with Machine Learning.
Url: https://medium.com/@ageitgey/how-to-break-a-captcha-system-in-15-minutes-with-machine-learning-
dbebb035a710

[7]captcha. Python Package. https://pypi.org/project/captchal/.

[8]He, K., Zhang, X., Ren, S., Sun, J., (2015). Deep Residual Learning for Image Recognition.
arXiv:1512.03385.

[9]Simonyan, K., Zisserman, A., (2015).Very Deep Convolutional Networks for Large-Scale Image Recognition.
arXiv:1409.1556

[10]Y. LeCun, L. Bottou, Y. Bengio, P. Haftner, "Gradient-based learning applied to document recognition",
Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

[11]Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Rafal Jozefowicz, Yangqing Jia, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané,
Mike Schuster, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqgiang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.

[12]Wes McKinney. Data Structures for Statistical Computing in Python, Proceedings of the 9th Python in
Science Conference, 51-56 (2010)

[13]Stéfan van der Walt, S. Chris Colbert and Gaél Varoquaux. The NumPy Array: A Structure for Efficient
Numerical Computation, Computing in Science Engineering, 13, 22-30 (2011)

[14]Chollet, Francois, Keras, GitHub, GitHub Repository: https://github.com/fchollet/keras
[15]https://www.kaggle.com/keras/resnet50

[16]https://github.com/ypwhs/captcha_break

GitHub Code: https://github.com/haotiansun/keras_captcha
https://github.com/zhangyt1234/breaking_captcha

