A Survey of Deep CNNs for Mouse Paw Location

Konstantin Kaganovsky
Stanford University
1050 Arastradero Rd., Stanford, CA

kkaganov[at]stanford.edu

Abstract

In order to study how brain activity is linked to motion,
researchers often record neurons while an animal, such as
a mouse, moves. These recordings of mouse movement must
be coded (marking foot location in each image frame),
which is an onerous task prone to human error. Here, we
tested four convolutional neural networks used for pose
estimation and object detection in order to find which
performed best at locating the mouse’s left front paw. We
tested DeepLabCut, the field standard, as well as a deeper
version of this network (DeepLabCut using ResNetl01).
Additionally, we attempted to achieve DeepLabCut’s
performance with a faster object detection network, Faster
R-CNN, as well as a hybrid between the two: Faster R-CNN
using ResNet50. We found that DeepLabCut with
ResNet101 had the smallest root mean squared error
(2.9650 pixels), which is slightly worse than human expert
performance (2.7 pixels) - a proxy for Bayes error. Faster
R-CNN was significantly faster than DeepLabCut but with
a much higher error rate.

1. Introduction

The neural basis of motion is not yet fully understood. In
experiments with animal models, such as mice, researchers
can record neural activity while a mouse moves on a
treadmill. Historically, in order to link brain and behavioral
data, experimenters manually label behavioral data (which
is labor intensive and prone to human error). Here, we
tested different convolutional neural network (CNN)
architectures to detect a mouse’s paw location. The inputs
to our algorithm are grey-scale images of mice running on
a ball. The output is an XY coordinate marking the left,
front paw’s location. We evaluate model performance by
calculating root mean squared error (RMSE) of the
predicted XY coordinate to the true (expert hand-labeled)
X,Y coordinate. We tested two main model types:
DeepLabCut (state-of-the-art for this task) and Faster R-
CNN. While DeepLabCut is known to have high accuracy,
the computational cost is very high (for both time and
resources). We selected Faster R-CNN as a second model,
as it is known to be much faster. DeepLabCut is very new
(2018), so our aim was to see if we could improve the model
accuracy through modifying the architecture and
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hyperparameters. With Faster R-CNN, our aim was to try
to achieve DeepLabCut’s accuracy but with shorter
training/test time using a smaller GPU.

2. Related Work

DeeplLabCut. In 2015, a research group used a Support
Vector Machine classifier to detect paw location with a
sliding detection window [1]; however, their model is
specific for black mice on a white background, the images
must have a specific resolution, and extensive
preprocessing of the image is necessary. Critically, it is not
taking advantage of recent developments in convolutional
neural networks for image detection. Also in 2015, another
group used a random forest classifier to detect mouse
posture [2]; however, extensive segmentation, background
subtraction, and alignment were necessary - and their
classification was manually supervised. So far, the state-of-
the-art for individual limb tracking is DeepLabCut [3] - a
simplified pose estimation model adapted from [4].
DeepLabCut (DLC) was just published 08/2018 in Nature
Neuroscience and made a huge impact on the field. DLC
uses the feature detector portion of the best performing
multi-person human pose estimation model (DeeperCut)
[4]. DeeperCut uses the ResNet architecture but then feeds
its output into a model that uses pairwise angles between
joints as a constraint for learning. Finally, this model uses
Integer Linear Programming with incremental optimization
to split the detected body parts into individual humans (if
multiple subjects are present in one image). While this
model achieves very high accuracyi, it is too complicated for
simple limb tracking of one research subject, and the
publicly-available labeled datasets for human pose
estimation are large (~25k examples) - unattainable for a
standard neuroscience research group.

Faster R-CNN. There has been a major push for image
recognition and object detection algorithms to increase
processing speed in recent years. Fast R-CNN [5] is an
object detection algorithm that trains significantly faster
than its predecessors. It uses an initial series of
convolutional layers with a max pooling layer to create
convolutional feature maps. A max pooling layer is used on
each proposed region of interest. A fully connected layer is



then fed into a softmax function, and object classification is
performed. Multi-task loss is used, which simultaneously
trains for object detection (classification) and regression of
bounding box location. Faster R-CNN [6] is an object
detection network that further increases the speed of Fast
R-CNN by adding a novel Region Proposal Network (RPN)
while maintaining the original convolutional layers for Fast
R-CNN. This RPN is a fully convolutional deep network
combining bounding box prediction with object scores,
which eliminates the main computational bottleneck of Fast
R-CNN, dramatically increasing the object detection speed
without negatively impacting performance. This algorithm
can be fine-tuned to detect specific object classes of
interest.

3. Dataset and Features

Our images were obtained from a Stanford neuroscience
research laboratory; they used a high-resolution camera
under infrared light illumination at 150 frames per second
with a resolution of 800x600 pixels (Figl). The position of
the mouse in the camera’s field of view is relatively
constant from one mouse to the next, and the illumination
conditions are consistent. The data were not pre-processed
or augmented as our error rate is sufficiently low. The data
were labeled by a single researcher in the lab instructed to
label a specific part of the paw. In our 2D object
detection/pose estimation models, each frame is treated as
a separate image. We have 973 images in the training set
(60%), 325 in the development set (20%), and 325 in the
test set (20%). The test set was saved until model
hyperparameters were finalized. We only used labels for the
front left paw. The same training, development, and test
images were used in each independently tested model to
allow for a fair comparison.
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Figure 1: Example Labeled Data Sample

4. Methods

DeepLabCut. DLC uses a ResNet-50 [7] architecture (Table
1) with stride 8, “same” padding, and modifications as
follows (Fig 2) - holes were added to the 3x3 convolutions
in conv5 to increase receptive field size, the stride of conv5
was decreased to 1 pixel to avoid down-sampling, the final
classification and average pooling layers were replaced
with deconvolutional layers to up-sample the final output
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Figure 2: Simplified DeepLabCut Architecture,
adapted from [3].

back to a similar size as the input image. This gave us a
“score map” of limb probabilities in each pixel of the
original image. The pixel with maximum probability was
selected as the predicted limb location. As mentioned in
lecture, there is generally more data available for object
classification tasks than for detection tasks, so this network
was pretrained on the ImageNet dataset. Sigmoid
activations were used, all model weights were fine-tuned on
the training set, and optimized with Stochastic Gradient
Descent (SGD, batch size of 1 to allow for different sized
inputs). The standard cross-entropy loss function (Eq. 1)
was used to predict pixel-wise class probability and finally
a Huber loss (Eq. 2, 8=1) was used to regress predicted
location to actual location — a form of location refinement
for the final coordinate. These losses were combined and
optimized with SGD (Huber loss was weighed by 0.05, the
optimal weight in [3]) Because the training data are labeled
as a single XY coordinate, DLC dilates this positive
labeled pixel to a radius of 17 pixels (these are all
considered “positive” pixels). DLC was implemented in
python [10-14] on 2 Ubuntu computers with a single
NVIDIA GTX 2080 8GB GPU. Training ran for 12-36
hours, but inference on new images takes a few minutes.

L(§,y) = —(ylogy + (1 —y) log(1 — 7))
Equation 1: Cross Entropy Loss

1 & -
Ls(y, f(z)) = 3y - f(2)) forly — f(z)| <6,
o dly— flx)| - .]352 otherwise.
Equation 2: Huber Loss for Regression: note f(x) denotes
predicted values

DeepLabCut with ResNet101. We also experimented with
a deeper ResNet architecture; we replaced the ResNet-50
model described above with ResNet-101 (now the conv4 x
block is repeated 23 times [7]). This ResNet model with 101




layers was also pre-trained on the ImageNet dataset, and we
implemented the same modifications as above to the output
layer in order to obtain a “score map” of limb probabilities.
Because this is a deeper network, we decided to experiment
with adding intermediate supervision. The intermediate
supervision was implemented akin to GoogleLeNet [8]. In
DLC, an intermediate detection/classification layer was
added to the output of the largest conv block (conv4) of
ResNet-101; in order to implement this, the network de-
convolved the feature map and predicted with a sigmoid
activation function similar to the final output. Then this
prediction is subject to cross-entropy loss (Eq.1) and added
to total loss described in Methods and subject to SGD. This
helps ensure that earlier parts of the network are learning
feature maps that have discriminate power for the final
object detection. This additional part of the network is
discarded during inference on new data.

Faster R-CNN. We used an input layer size of 32x32x3.
There were two convolutional layers, each with thirty-two
3x3x3 convolutions with stride 1 and padding 1. Each of
these convolutional layers was followed by a ReLU
activation layer. Following this, max pooling was used
(3x3, stride 2, padding 1). A fully connected layer (64) then
fed into a third ReLU layer. The last fully connected layer
(output 2, since only identifying one class) was followed by
softmax and cross-entropy loss was calculated. Loss
function uses binary classification evaluated by measuring
intersection over union of the proposed bounding box and
the true label bounding box (Eq. 3). This model was
pretrained on PASCAL VOC. It s trained using SGD using
mini-batch size 1 for 5 epochs. Faster R-CNN was
implemented in Matlab [9].
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Figure 1. (Left) Faster R-CNN architecture. (Right) Region
Proposal Network for Faster R-CNN. Both images adapted from
Renetal. 2016 CVPR.

1 *

L({p:i}: {t:}) = N > Leis(pisp})
1 * *

+>\m ;pi[/mg(twti)'

Equation 3. Faster R-CNN Loss Function.

Faster R-CNN with ResNet50. We exchanged the
convolutional layers of Faster R-CNN with a Residual
Network (50-layers) pretrained on PASCAL VOC [7]. This

uses 5 blocks of convolutional layers (convl-conv5)
followed by an average pool layer, a fully connected layer,
and softmax layer for classification (for details, see Table
1). This architecture has been used effectively for image
recognition tasks. Importantly, ResNet50 architecture is
used in DeepLabCut, suggesting it is an appropriate model
for this task. We used the same Regional Proposal Network
and output layers (fully connected layer, classification, loss
function) as in our Faster R-CNN model. This model was
designed and run using Matlab [9].

Layer Layer Details
Name

convl 7x7, 64, stride 2

conv2_x | 3x3 max pool, stride 2
1x1, 512

3x3,512 x3
1x1, 2048

conv3_x 1x1, 512
3x3, 512 x4
1x1, 2048

convad_x 1x1,512
3x3,512 x6
1x1, 2048

convs_x | 1x1,512
313,512 x3
1x1, 2048

Final Avg. pool, fc, softmax
layers

FLOPs 3.8x10°

Table 1. ResNet50 Layers (Adapted from He et al. 2016 CVPR).
ResNet50 replaced the convolutional network in standard Faster
R-CNN (Figure 3).

5. Experiments/Results/Discussion

We used root mean square error (RMSE) between
predicted and true X,Y coordinate of left foot position as a
single number evaluation metric to tune the
hyperparameters, as this is the field standard for testing this
type of model [3]. Human performance on this task is a
good estimate of Bayes error and has been reported as
RMSE of 2.7 pixels [3]. For perspective, the mouse paw has
an area of about 1000-2000 pixels?, and the human-labeled
X,Y coordinate marks the outermost front edge of the foot.

Experiment 1: Hyperparameter tuning of DeeplLabCut
(with ResNet). Experiments began by varying the learning
rate - we began with the published parameters: 5x10- for
10k iterations, 2x10°2 for 420k iterations, and 2x10- for 70k
iterations for a total of 500k iterations. SGD converged to a
similar cross-entropy loss for all leaming rates within 500k
iterations (Figd). We varied the learning rate as shown in
Table 2 and found a better solution than [3] based on RMSE
of the development set. To further optimize the model and
training time, we varied the size of the input images with
the following scaling factors: (0.5,0.8,1.0,1.2,2.0) and
obtained development set (dev) RMSE of: (5.0864, 4.4437,
5.6170,4.9365, 15.4678). The scaling factor of 0.8 was the
best, but there is surprisingly no major difference from 0.5
to 1.2 scaling - indicating that at our resolution, detecting a
simple white paw on a black background does not require a
full-scale image. If training speed needs to be optimized




then 0.5 may be best, but we continued with 0.8 as our goal
was minimizing RMSE.
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Figure 2: Learning Rate Comparison for DeepLabCut

Learning rate Training Dev.
RMSE RMSE
0.0005,0.002,0.0002 1.285 6.1486

0.0025,0.01,0.001 1.0097 4.4437

0.005,0.02,0.002 0.9204 5.41

0.01,0.04,0.004 0.9081 7.3286

Table 2: DeepLabCut: Effect of learning rate on train and dev
RMSE

Experiment 2: Testing a deeper network for DeepLabCut
(with ResNet101). We then switched the CNN to a deeper
ResNet-101 architecture, but did not observe a dramatic
decrease in dev RMSE (Train RMSE: 0.6251, dev RMSE:
4.9553). Based on the difference between train and dev
RMSE, the larger network is overfitting the training data,
so increasing training data may help overcome this problem
and further decrease the dev RMSE to below the standard
DLC value. Further, adding intermediate supervision
halfway through the network did not improve performance,
but actually increased the overfitting problem (Train
RMSE: 0.567, dev RMSE: 9.5173). It is possible that
adding more training data would help reduce this high
variance problem. However, the fact the train RMSE
decreased is surprising, we expected the residual
connections learned by ResNet and the intermediate loss
function to almost be redundant — the Deep Learning
community uses both to decrease the effect of vanishing
gradients. However, this shows intermediate supervision
can further improve performance given enough data.

DeepLabCut (ResNet101) Training
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Figure 3: Learning Rate Comparison for DeepLabCut with ResNet
101

DeeplabCut Training Dew.
ResNet101 RMSE RMSE

No Intermed. 0.6251 4.9553
Supervision

Intermediate 0.567 9.51730
Supervision

Table 3: DeepLabCut with ResNet101: Effect of intermediate
supervision on train and dev RMSE

Experiment 3: Faster R-CNN. While DeepLabCut is the
field standard, it requires significant time and
computational resources to train. We tested Faster R-CNN
to see whether it could perform similarly in terms of
accuracy. A main difference between DeepLabCut and
Faster R-CNN is that DeepLabCut uses labels of XY
coordinates, and Faster R-CNN uses bounding boxes
(providing object classification within the box). Our first
series of tests resulted in 0% accuracy (high bias). We
completed an error analysis (looking at 100 incorrectly
labeled images) and found that the model was labeling
light/dark edges. We tested a series of bounding box sizes
and eventually chose a box of 50x50 pixels and also
centering it around the foot (shifting the XY label by 25
pixels up/left), which had the lowest dev set RMSE (80
pixels). From here, we trained this model using 5 different
learning rates (Figure 6, Table 4). Looking at RMSE on the
development set, learning rate of 0.0005 had the lowest
RMSE (82.9 pixels). Variance across these tests was quite
low (minimal difference between training and dev RMSE),
but bias was high even with our best bounding box labels
and learning rates. Therefore, in our next experiment, we
changed the model architecture to resemble DeepLabCut
more closely.

Faster R-CNN Training:
Learning Rate Comparison
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Figure 4. Learning rate comparison for Faster R-CNN. Learning
rate of 0.0005 resulted in the lowest RMSE.

Learning | Training Dev.
rate RMSE RMSE

0.001 80.1 86.7

0.005 103.5 107.5

0.0001 80.1 83.6
0.0005 77.3 82.9
0.00001 | 174.3 166.6

Table 4. Learning rate comparison for Faster R-CNN. Learning
rate of 0.0005 resulted in the lowest RMSE (82.9 pixels).

Experiment 4: Creating a hybrid between Faster R-CNN
and Deepl.abCut.




Here, we used a ResNet50 architecture integrated with
Faster R-CNN’s Regional Proposal Network to try to
reduce bias in the Faster R-CNN model. We used the same
optimal bounding box and XY label positions found in
Experiment 3. We trained the model using 4 learning rates
(Figure 7, Table 5) and found that learning rate of 0.005 had
the lowest development RMSE (22.9 pixels).This model
showed much less bias than the standard Faster R-CNN.
There was still a fairly low variance (bias remains the
predominant issue). For error analysis, the model
consistently chose either the correct foot, a different foot,
or the head (the three bright locations). However, almost all
images labeled the correct foot. At this point, the margin of
error is likely due to the way we systematically created
bounding box labels from X,Y coordinates (instead of
manually assigning bounding box labels). For future, we
would go back and hand-label the test data set to minimize
this error.

Faster R-CNN (ResNet50) Training:
Learning Rate Comparison
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Figure 5. Learning rate comparison for Faster R-CNN with
ResNet50. Learning rate of 0.005 resulted in the lowest RMSE.

Learning | Training Dew.
rate RMSE RMSE

0.001 31.8 324
0.005 20.3 229
0.0001 29.0 325
0.00001 | 39.7 42.7

Table 5. Learning rate comparison for Faster R-CNN with
ResNet50. Learning rate of 0.005 resulted in the lowest RMSE
(22.9 pixels).

Final Comparison across 4 models.

For our final comparison (Table 6), we used the satisficing
metric of RMSE < 10 pixels and our optimizing metric was
computational speed. DeeplLabCut and DeeplLabCut101
were the only model to reach our satisficing metric with a
test RMSE of 2.965 pixels. This is only slightly worse than
human performance (our estimate of Bayes error) at 2.7
pixels. Faster R-CNN using ResNet50 was the third-best
performing model with a test RMSE of 19.9 pixels, and the
computational speed was much faster than DeepLabCut
(1.9 hrs to train vs 24 hrs to train DeepLabCut) even using
a much weaker GPU. Upon inspecting the labeled frames,
DeepLabCut located the proper paw in 100% of the frames!
Indeed, human labels seemed to be more variable than the
predicted paw label. Impressively, DLC detected the paw
even when it was hard for us to detect the paw without

looking at the previous frame and the next frame (Figl,pink
spot).

Model Training | Dew. Test Average time to | Hardware (GPU)
RMSE RMSE RMSE run

DeeplabCut | 1.0097 | 4.4437 3.1686 24hr train GeForce GTX
3 min test 2080

DeeplabCut | 0.6251 4.9553 2.9650 | 36hrtrain GeForce GTX

(ResNet101) 3 min test 2080

Faster R- 77.3 82.9 81.3 0.8 hrs training GeForce GTX

CNN 6 min. testing 1050

Faster R- 20.3 229 19.9 1.9 hrs training GeForce GTX

CNN 20 min. testing 1050

(ResNet50)

Table 6. Final comparison across four models. DeepLabCut had
the lowest test RMSE (2.9650 pixels). Faster R-CNN had the
lowest training time (0.8 hours).

6. Conclusions/Future Work

We were surprised to find that Faster R-CNN with
ResNet50 was able to perform reasonably well with
dramatically decreased training time and GPU resource
needs. Future work would continue to hone this model to
see if we can improve accuracy to the level of DeepLabCut
while still maintaining the low resources of Faster R-CNN.
This would make this tool more accessible to researchers
with more limited computational resources. Using the
ResNet50 layers improved the performance of Faster R-
CNN significantly and its possible a deeper network would
help more.

DeepLabCut performed the best, reaching almost human
expert level performance. In previous iterations of
DeepLabCut (not shown here) and in the RCNN models,
we observed the model predicting the wrong paw when the
front left paw was not visible or close to the front right, for
example. Future work could integrate multi-target tracking
algorithms to add priors about the possible sequence that a
mouse limb can take - for example, the loss function can
incorporate information about the previous predicted
location and “punish” large changes from one frame to
another. This would be reasonable at fast frame rates and
would decreasing the likelihood that models would classify
a random bright spot (or the wrong paw) as the target in
select frames. Alternatively, a 3D version of this model
could be implemented to include temporal information in
detection. Overall, CNNs show promise for mouse paw
localization and can already perform close to human level.

7. Contributions

KK ran the DeeplLabCut and Deepl.abCut ResNet101
experiments. ML conducted the Faster R-CNN and Faster
R-CNN with ResNet50 experiments. Both authors
discussed model bias and variance, training and
development set results, and error analysis throughout the
quarter to inform further decisions.
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