Fine-Grained Image Classification for Vehicle Makes
& Models using Convolutional Neural Networks

Nicholas Benavides
Department of Computer Science
Stanford University
Stanford, CA
nbenav @stanford.edu

Abstract—Vehicle identification via computer vision is an
important task for traffic control, video surveillance, and security
and authentication. However, there are challenges with image
classification of vehicles due to the fine-grained details that are
inherently harder for a computer to detect. Using limited data
from the Stanford Cars dataset, we implement transfer learning
on a pre-trained Convolutional Neural Network (CNN)
framework to classify vehicles based on 196 classes of different
vehicle makes, models, and years. After fine-tuning, we achieve a
test accuracy of 85% and top-5 test accuracy of 96.3%, surpassing
state-of-the-art results.

Keywords—Vehicle identification, computer vision, fine-grained
details, transfer learning, Convolutional Neural Network,

I. INTRODUCTION

Cars are ubiquitous in our daily lives as a means of mobility
and transportation. As a result, many different models of cars
exist around the world, catering to the specific preferences of
drivers in terms of aesthetics and functionality. With around a
billion vehicles on the planet, each having their own distinct
physical features, the need for efficient and robust identification
of such objects has increased over the years. Vehicle
recognition has a wide range of applications, such as video
surveillance, security and authentication issues, and even
accessibility features for ridesharing apps. In computer vision,
fine-grained classification can be a very challenging problem
because differences between classes tend to be much more
nuanced compared to class differences in tasks such as object
detection. In this case, fine-grained classification is defined to
be classification with categories that share similar basic features.
Cars are a perfect example of this, as they share a common
physical structure, but can differ widely in physical sub-
features such as height, width, wheel type, etc. Our
classification problem is accurately discerning a car’s make and
model from a digital image of the car. Historically, humans are
fairly good at vehicle classification, as they can pick up on
small details such as a logo or lettering on the vehicle. However,
this task has been difficult for computers due to the fine-grained
nature of the problem.

This project implements a Convolutional Neural Network
(CNN) with transfer learning to accurately classify cars from an
image dataset by vehicle make and model. The input to our

Christian Tae
Department of Electrical Engineering
Stanford University
Stanford, CA
ctae @stanford.edu

algorithm is a set of images from the Stanford Cars dataset,
which contains 196 classes of cars [1]. We then use a CNN to
output a prediction of car make, model, and year. Despite the
complexity of the problem and limited amount of data in the set
of images, we were able to achieve high quality results from
fine-tuning of model hyperparameters.

II. RELATED WORK

Fine-grained vehicle classification has recently become a
popular topic of study amongst computer vision researchers due
to the availability of image datasets and increase in
computational power. CNN’s are a popular choice for general
object recognition/classification, as shown by their ability to
achieve state of the art accuracy on generic image classification
[2]. Specifically, convolutional neural networks are an effective
tool for computer vision and image recognition due to their
ability to analyze spatial coherence of images and reduce the
number of trainable parameters. We now go over specific
applications of CNN’s on fine-grained image classification in
past research.

In a survey paper, Zhao et al. proposed a “ensemble of
networks-based approach” for subset feature learning. The
approach implements two main parts: 1) a domain generic
convolutional neural network (pre-trained on large-scale
dataset of same domain as target dataset and then fine-tuned on
target), and 2) several specific convolutional neural networks
[3]. In terms of real-life implementation, Xie et al. used a
network of five convolutional layers and two fully connected
layers for vehicle recognition on a Stanford cars dataset [4]. The
study utilized hyper-class data augmentation, which augments
fine-grained data with a large number of auxiliary images
labeled by some hyper-classes [4]. The study achieved an
accuracy of 80% with multitask learning, and 86% with the
model pre-trained on ImageNet with multitask learning [4].
Another study used a two-part model: 1) VGG16 network
structure for vehicle detection of images with complex
backgrounds, and 2) a CNN with a joint Bayesian network for
classification [5]. VGG16 is a CNN architecture that features
13 convolutional layers and 3 fully-connected layers.

Transfer learning is a popular choice for vehicle recognition
tasks that use large CNN architectures. In transfer learning, a

base network is pre-trained on dataset to create weights and
features. This network, with its trained weights, is then
transferred to a new dataset by retraining a subset of the base
network’s learned weights and features. The overall effect is a
classifier that fits the new dataset with state-of-the-art results.
One study utilized transfer learning to make predictions on the
Stanford Cars dataset, in which a fine-tuned VGGNet model
was able to achieve 78.9% accuracy, and 94.2% top-5 accuracy
[6]. The top model was GoogLeNet full-train which achieved
80.0% accuracy and 95.01% top-5 accuracy [6]. These results
were used to evaluate the performance of our fine-grained
classifier.

III. DATASET

We used the Stanford Cars dataset to train and evaluate our
vehicle classification models [1]. The dataset contains 16,185
image classification pairs of 196 different classes. Each of the
fine-grained 196 classes is determined by year, make, and model
of a vehicle.

Fig. 1. Sample Images from Stanford Cars dataset.

As shown above, each image contains a car in the foreground
against various backgrounds viewed at different angles. The
quality of image, as determined by camera type, lighting, focal
length, and positioning, varies from image to image. Some
images are professionally-taken shots; others are relatively low
quality images taken from classified ads on the internet.

Distribution of Images by Class

i of [mzlj(_u: Clases
B
=

e B E
|

|

I

|

1
[
]
]
]
|

|

{133, 138

of Images Per Class
Fig. 2. Histogram of number of images per vehicle class.

The distribution of the number of images per vehicle class is
visualized from the histogram above. There is an average of
around 83 images per class. There is a minimum of 48 images
per class and a maximum of 136 images per class.

In terms of data processing, we first cropped the images
based on the bounding boxes provided in the dataset, using a
padding of 16 pixels on each side to ensure that parts of the car
were not cropped away. From there, we normalized the pixel
values for all of the images by dividing them by a factor of 255.
Then, we ran a random, stratified train-test split to divide the

dataset and preserve the distribution of classes from the full
dataset.

We also applied several data augmentation methods on the
training set images to increase the size of our training set. These
methods included flipping images horizontally, rotating images
randomly by up to 30°, shifting images horizontally by up to
20%, and shifting images vertically by up to 10%. Before dataset
augmentation, training set size was 11,303 images. Test set size
was 2,426 images.

IV. METHODS

For this project and task, we leveraged the VGG-16 network
architecture [7], shown below in Figure X. As mentioned before,
VGG-16 is a CNN architecture that features 16 trainable layers,
namely 13 convolutional layers and 3 fully-connected layers.
The convolutional layers are grouped into blocks, with each
block separated by a max pooling layer. As an image is passed
through the VGG-16 network, the early layers learn simpler
features such as edges and shapes, whereas the later layers can
learn more complex features such as objects.

y VGG-16 Model Architecture
> M m
f H j [H I ==t
y 4 ! | J y
i maxpool maxpool | maxpool maxpool

FlpooL S depth=256 depth=512 depth=512 size=4096
depth=64 depth=128 3x3conv 3x3 conv 3x3 conv EC1
3x3 conv 3x3 conv conv3_1 conv4_1 conv5_1 EC2
convl_1 conv2_1 conv3_2 conv4_2 convs_2 size=1000
convl_2 conv2_2 conv3_3 conv4_3 conv5_3 softmax

Fig. 3. VGG-16 Model Architecture.

Since our dataset was relatively small and our literature
review suggested that transfer learning was a useful approach
for fine-grained image classification, we imported VGG-16
weights trained on ImageNet [8] and then fine-tuned them for
our particular task. To do so, we removed the 1000-dimension
softmax output layer and replaced it with a 196-dimension
softmax output layer to model the 196 classes of vehicles in our
dataset. The model takes as input color images of size 224 x
224 x 3 and, for each class, assigns a probability that the image
is of that class. From there, the model predicts the class with the
highest probability. For our cost function, we used categorical
cross-entropy loss, which is defined by the equation below for
observation o and class c.

2625 Yo,clog (o) (1)

For our baseline model, we fine-tuned the weights on the
fully-connected layers of the VGG-16 network, conducting a
hyperparameter search but not modifying the model
architecture. For our best model, we made several modifications
to the original VGG-16 architecture. First, we eliminated the
first fully-connected layer and decreased the dimension of the
second fully-connected layer from 4096 to 512. In addition, we
added a dropout layer after the 512-dimension fully-connected

layer. Both of these changes aimed to reduce the overfitting that
we observed in the baseline model. The figure below shows how
our modified network differs from the baseline model
architecture. Both models feature the same architecture up until
the fully-connected layers.

input: | (None, 7,7,512) input: | (None,7,7,512)
flatten_1: Flatten flatten_L: Flatten
output: | (None, 25088) output: | (None, 25088)
input: | (None, 25088) | input: | (None, 25088)
dense_l: Dense dense_l: Dense
output: | (None, 4096) \ output: | (None, 512)
input: | (None, 4096) input: | (None, 512)
dense_2: Dense dropout_1: Dropout
output: | (None, 4096) o op output: | (None, 512)
input: | (None, 4096) input: | (None,512)
dense_3: Dense dense_2: Dense
output: | (None, 196) - output: | (None, 196)

Fig. 4. Last 4 Layers of the Baseline VGG-16 model (left) vs Last 4 Layers of
the Modified VGG-16 model (right).

The models themselves were built using NumPy, Tensorflow,
and Keras. We also leveraged and adapted code to build the
dataset[9], train the VGG-16 models [10] and visualize the
network [11].

V. RESULTS

For the baseline model, a hyperparameter search for optimal
learning yielded a learning rate =0.005, 10 epochs, and
stochastic gradient descent with momentum as our optimizer,
with a learning rate of a = 0.005, decay = le-4, and momentum
= 0.5, freezing the first 19 layers of the VGG-16 network. For
the best model, a hyperparameter search of the learning rate and
weight decay for optimal learning yielded values of a = le-4,
weight decay = le-4, 85 epochs, and Adam as our optimizer,
where Betal and Beta2 were set to the recommended values of
0.9 and 0.999. The best model also froze the first 17 layers of
the VGG-16 network, eliminated the first dense layer, changed
the second dense layer to have dimension 512, and adding a
dropout layer after the 512-dimension dense layer using a
dropout rate of 0.7.

To evaluate our results, we tracked three different accuracy
metrics. The first accuracy metric is the overall accuracy, or the
percentage of time that the highest probability output by the
softmax layer corresponds to the true class. Because of the
subtle differences in between classes, we also report the top-3
accuracy, which is the percentage of time that the true class
appears in the 3 highest probabilities output by the softmax
layer, and the top-5 accuracy, which is the percentage of time
that the true class appears in the 5 highest probabilities output
by the softmax layer. Table 1 below summarizes our results.
Our best model achieved strong performance in all three
accuracy metrics on the test set, and solved the overfitting
problem we observed with our baseline VGG-16 model.

TABLE L MODEL RESULTS

Train Train Train Test Test Test
Model Ace Top-3 Top-5 Ace Top-3 Top-5
) Acce. Acc. : Acc. Acc.
NOGI6 | 85.8% | 96.6% | 982% | 52.1% | 754% | 83.83%
Modified
VGG16 84.1% 95.6% 97.9% 84.0% 93.9% 96.3%
Network

Figures 5 and 6 below, illustrate the losses and accuracies
with respect to the number of training epochs. For both the
training and test sets, the loss decreases rapidly and then
improves gradually, with the test loss increasing more rapidly
at the beginning of training. Similarly, the accuracies increase
rapidly at the start of training and then plateau, with the test
accuracy accelerating more rapidly than the training accuracy
in the earlier epochs.

Loss vs # of Epochs

= Training Loss
~——Test Loss

1 11 21 31 41 5l 61 7 81
of Epochs

Fig. 5. Training and test losses vs. number of epochs for Modified VGG16
Network.

Accuracy vs # of Epochs

p——

= Training Accuracy

Test Accuracy

1 11 21 31 41 51 61 7 gl
of Epochs

Fig. 6. Training and test accuracies vs. number of epochs for Modified
VGG16 Network.

In order to better understand what our fine-tuned model was
learning, we generated occlusion maps for random images in
the test set. Generally, the maps block out most of the
background of the image, indicating that the most important
parts of the image for the model is the body of the car itself. An
example of one such occlusion map is shown below in Figure
8. The darker areas in the heatmap (middle image of the figure)
represent the areas of the image that are most important to the
model.

Fig. 7. Original image (left), heatmap (middle), and overlay of binarized
heatmap onto original image (right).

In terms of error analysis, we examined 100 images that were
not properly classified to gain insights into how the model
works and what kinds of errors it was more prone to making.
From this analysis, we identified three main groups of
misclassifications: one where the model correctly predicts the
make but not the model of the car, one where the model predicts
a similar style of car from a different make, and rearview
images.

Confusing different models from the same car make is an
understandable misclassification that even humans make, as
manufacturers may have several different models of sedans or
SUVs. An example of this error is shown below in Figure 9.

— e e

Ry

Fig. 8. Model Input = Dodge Charger Sedan 2012 (left), Model Prediction =
Dodge Durango SUV 2007.

As shown in the image, different models from the same
manufacturer generally have similar bodies. Although the cars
do look fairly different, they share similar shapes for the grill at
the front of the car as well as the ridges on the hood of the car.

Another common misclassification occurs when the model
predicts an image to be a similar car of a different make. These
vehicles often have very similar body shapes, with small
identifying features like the car’s logo or lettering being the
most reliable way to distinguish between vehicles, which is
very difficult for our model to identify.

Fig. 9. Model Input = Dodge Ram Pickup 3500 Crew Cab 2010 (left), Model
Prediction = Ford F-150 Regular Cab 2007.

The final major category of prediction errors stems from
images taken from the rear of the car. From a sample of 50
random images in the dataset, we estimate that rearview images
make up approximately 5% of the training set. These images

make it hard to identify the shape of the car, as seen below in
Figure 11.

Fig. 10. Rearview Image of a Maybach Landaulet Convertible 2012.

Thus, while our model performed very well in terms of
prediction accuracy, evaluating and classifying the errors made
in the model’s incorrect predictions gave us insight on what to
do next. No model is perfect, and we observed that for some
images the model confused different modes from the same car
make and predicted an image to be a similar car of a different
make. Due to similar body shapes and fine-grained details, it
was understandable that our model would incorrectly classify
the wrong vehicle. Finally, the fact that the model incorrectly
classified many rear-view images can be addressed in future
work.

VI. CONCLUSION

Through our experimentation with the VGG-16 network, we
found reducing the number of trainable parameters by
eliminating and downsizing dense layers and applying dropout
to be an effective approach for reducing overfitting on the
training set. Due to the limited images in our dataset, these
techniques, in addition to image augmentation and transfer
learning, were critical to achieving strong performance. Using
this technique, we obtained a test accuracy of 84% and a top-5
test accuracy of 96.3%, surpassing state-of-the-art results for
top-5 accuracy. We believe these techniques are applicable
beyond vehicle classification and may help to improve
performance on a wide range of fine-grained classification
problems.

To improve our model’s test performance further, we would
work to obtain more rear-view images of cars for our training
set, as those images represented an outsized number of
misclassifications. In addition, we would want to experiment
with other model architectures as well as conduct more
visualizations of the network to better understand how the model
distinguishes between classes.

CoDE
The code used for this project can be found in this Github
repository.

ACKNOWLEDGMENT

The preferred spelling of the word “acknowledgment” in
America is without an “e” after the “g”. Avoid the stilted
expression “one of us (R. B. G.) thanks ...”. Instead, try “R. B.
G. thanks...”. Put sponsor acknowledgments in the unnumbered
footnote on the first page.

CONTRIBUTIONS

Nicholas Benavides was primarily responsible for the data
processing, image augmentation, and visualizations. Christian
Tae was primarily responsible for the literature review and
communication of results. Both parties were equally
responsible for training models, running experiments,
interpreting the results, creating the poster, and writing the final
report.

REFERENCES

[1] Krause, J., Stark, M., Deng, J., & Fei-Fei, L. (2013). 3d object
representations for fine-grained categorization. In Proceedings of the
IEEE International Conference on Computer Vision Workshops (pp. 554-
561).

[2] Krizhevsky, A., Sutskever, I. and Hinton, G.: ImageNet Classification
with Deep Convolutional Networks. In: NIPS 2012

[3] Zhao, B., Feng, J., Wu, X., & Yan, S. (2017). A survey on deep learning-
based fine-grained object classification and semantic segmentation.
International Journal of Automation and Computing, 14(2), 119-135.

[4] Xie, S., Yang, T., Wang, X., & Lin, Y. (2015). Hyper-class augmented
and regularized deep learning for fine-grained image classification. In

Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 2645-2654).

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Yang, L., Luo, P., Change Loy, C., & Tang, X. (2015). A large-scale car
dataset for fine-grained categorization and verification. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (pp.
3973-3981).

Liu, D., & Wang, Y. (2017). Monza: image classification of vehicle make
and model using convolutional neural networks and transfer learning.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional

networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556.
Chollet, F. 2016, VGGl6, VGGI19, and ResNet50, vO0.1,

https://github.com/fchollet/deep-learning-models/releases/tag/v0. 1
Katanforoosh, K. 2018, CS230 Code Examples,
https://github.com/kiank/cs230-code-examples

Wang, X. 2019. Fine Tune VGG Networks Based on Stanford Cars.
https://github.com/Xiaotian-WANG/Fine-Tune-VGG-Networks-Based-
on-Stanford-Cars

Saurabh, P. (2019, May 06). Understanding and Visualizing Neural
Networks in Python. Retrieved from
https://www.analyticsvidhya.com/blog/2019/05/understanding-
visualizing-neural-networks/

