Neural Network Agents for
Control Tasks in OpenAl Gym

Shengjun (Sophia) Qin
Department of Electrical Engineering
Stanford University
Email: sjqin@stanford.edu

Abstract—In recent years, reinforcement learning has been
reported to be successful in many fields that involves highly non-
linear systems. It is also promising in developing automated agents
that deal with complexed tasks, without lots of human efforts.
Based on an open-source simulation framework, multiple
reinforcement algorithms, including policy gradient, deep Q-
network (DQN), deep deterministic policy gradient (DDPG) and
advantage actor-critic (A2C) method, and control tasks, including
discrete and continuous action spaces, are explored in this project.
Different neural network (NN) architectures in policy network are
also explored. The results indicate that a wider NN is preferred for
efficient agent training.

I. INTRODUCTION

Reinforcement learning (RL) [1] is a branch of machine
learning that is concerned with making sequences of decisions.
RL is different from supervised learning, where a prediction
model learns from a training set with labels. Instead, RL learns
from an interactive process, and trains an agent that gives
actions, based on current state, to achieve the most reward. The
RL has demonstrated wide applications in different fields,
including data-center resource management [2], robotics [3] and
solving different games like the AlphaGo [4]. The OpenAl Gym
[5] provides a collection of benchmark problems in multiple
scenarios for developing RL algorithms. In this project, we
design and train neural-network (NN) based agents to solve
multiple control tasks provided in the OpenAl Gym, and use
reinforcement learning algorithms to train these agents to
achieve desired performance.

CartPole

Pole Velocity (x3)
Pole Angle (x;)i §

-

Cart Position (x,)

R

Cart Velocity (x;)
—

Fig. 1 Cart-Pole simulations from OpenAI Gym. The observation (xo
— x3) of the simulation consists of cart velocity, cart position, pole
angle and pole velocity, respectively. The control agent gives binary
instructions of left and right moves, based on the observation, and
avoids (1) falling of the pole, or (2) cart moving out of the boundary.

Junkai Jiang
Department of Electrical and Computer Engineering
University of California, Santa Barbara
Email: junkaijiang @ece.ucsb.edu

II. PoLiCY NETWORK AND REINFORCEMENT LEARNING

Unlike supervised learning, where training is based on a
dataset with desired output, the idea of reinforcement learning is
learning what to do, without being told what the direction action
is, to maximize rewards [1]. A policy defines the agent’s action,
given the observation of the environment, and a reward is the
goal of the environment and is immediately given to the agent
after its actions at each timestep. In this section, we explore and
show the need for neural network, a highly non-linear system,
policy/agent, and the reinforcement algorithms, including policy
gradient and deep Q-network (DQN), to effectively train the
neural network agent, in the environment of CartPole [5]. In
CartPole, the task is to train an agent that gives actions (whether
to move left or right, encoded by 0 and 1), based on observations
(Fig. 1), so that the reward, which is the number time steps that
the cart-pole stays stable, is maximized.

A. Neural Network based Agent

A simple random selection between 0 and 1 will result in a
very unstable system. Additionally, a naive agent that chooses
actions only based on the pole angle (move left/right when the
pole angle is negative/positive, respectively, also results in low

70
60

40

30 ‘
20 ‘}
10

. e

Random Agent Naive Agent
600 (b) Stable Time Step Counts

500 |
40 |
30

20

“ ol
g 0 11T

Deterministic Linear Agent Non-deterministic NN Agent

(a) Stable Time Step Counts

o © O

Fig. 2 Stable time step counts in 20 experiments for (a) agents of
random actions (left) and naive actions (right), (b) deterministic linear
agent (left) and non-deterministic neural network (NN) agent, both
trained by policy gradient. Note that the maximum time step in each
episode is 500.

3oo(a) Average Timestep per Episode (Simulated Annealing)
200
100
0
Training Episode
600 , ; ; :
(b) Average Timestep per Episode (Policy Gradient)
400
200
0
Training Episode
60(tc) Average Timestep per Episode (DQN)
400
200
0
Training Episode

Fig. 3 Average timestep per episode in training for (a) simulated
annealing optimization, (b) policy gradient and (c) deep Q-network
(DQN). The noise in (c) is from e-greedy policy to explore policy
search space. Note that the maximum time step in each episode is 500.

reward (Fig. 2a), indicating the 4 inputs are needed in
determining the proper action. We also explored a simple
deterministic linear agent, based on a simple linear combination
of the observation vector and a non-deterministic neural network
agent with one hidden layer (Fig. 2(b)). The two agents are
trained by policy gradient, which will be described in the next
part. Neural network agent, obviously, performs better than the
deterministic linear agent, most likely because of the non-linear
nature of CartPole environment. Thus, in the following
experiments, we use neural network agents.

B. Optimization in Model-Free Environments

Under the assumption of Markov decision process, the
current reward and the expected discounted reward is only
dependent on the current observation or state and action. The
optimal action is the action that leads to the most expected
discounted reward. In a model-free environment, the
reinforcement learning is to find the state value (Q) function that
predicts the expected discounted reward, based on current
observation and action. According to our experiments, random
search or traditional optimization algorithm, such as simulated
annealing, does not lead converged solutions within reasonable
time steps. On the other hand, reinforcement algorithms,
including policy gradient and DQN, offers convergence (Fig. 3)
and good trained agent performance.

III. SIMULATIONS AND ENVIRONMENTS SETUP

The OpenAl Gym offers multiple control simulation
environments, ranging from discrete-action-space environments
like CartPole and Atari Arcade games to continuous-action-
space environments like Roboschool simulations [5]. Stable
Baselines [6] provides a set of reinforcement learning
algorithms that are used in this project.

(a) Atari-Breakout Neural Network

Agent

(®

(d) Roboschool
Walker2d

—

Fig. 4 (a) Schematic showing a neural network agent takes in images
from Atari-Breakout game and gives discrete actions. The continuous
action space environments studied in this project are (b) HalfCheetah,
(c) Ant and (d) Walker2d. The aim in (b)-(d) is to run as fast as
possible.

B
« > (Fire
),

Discrete Action

Observation

Roboschool
HalfCheetah

(c) Roboschool
Ant

|
|

\

\

A. Discrete and Continuous Action Spaces

In some control environments from OpenAl Gym, the agent
only needs to give discrete actions. For example, in the Breakout
game from Atari Arcade (Fig. 4a), the actions are only
combinations of a single or multiple of the buttons. In this case,
the agent or the policy network takes the input of the
environment observation and gives the output Q-function of
each discrete action in the current time step, as in DQN [4]. In
other environments, the action space is continuous, as shown in
Roboschool robot control tasks (Fig. 4b-c), and the agents are
trained by deep deterministic policy gradient (DDPG) [7] in this
project.

B. Reinforcement Learning Algorithms

A basic reinforcement learning model is shown in Fig. 5,
where an agent (e.g. a human) observes the environment and
takes actions based on certain algorithms. Various types of
reinforcement learning algorithms are studied to train the agent
and decide how to interact with the environment within the next
action. Different algorithms would be desired for different tasks
and limited by specific constraints and the progress of relevant
research. In this work, we explore Policy Gradients, Actor-Critic
methods (DDPG and Advantage Actor-Critic (A2C)) and Q-
learning with DNN (DQN).

The Policy Gradient method is one of the major categories
of reinforcement learning algorithms and focuses on the policy
to make better rewards happen with higher possibilities. Q-
learning is an action-value function learning with an exploration

Agent
State Reward Action
St R A
! Rt&l
i Sig Environment =~ <+———

Fig. 5 Schematic of a basic reinforcement learning model.

State b Critic —— QValue

[Rewards

Observations Actions

Environment

(b) Global Network

Policy Value
SS e

Network
t

Input

[

Coordinator —‘

Agent 2 Agent n

Agent 1

. 4 .

! ! !

Environment 1 Environment 2 Environment n

Fig. 6 Schematics of (a) Deep deterministic policy gradient (DDPG)
and (b) Advantage Actor-Critic (A2C) methods.

policy. DQN is a Q-learning method adopting deep neural
network to estimate Q-values using a replay buffer and a target
network. While Policy Gradient methods need large number of
samples to achieve an optimal result, the Actor-Critic methods
require less samples and use an actor to model the policy and a
critic to model the value. DDPG and A2C are two methods in
the Actor-Critic method category (schematics in Fig. 6). DDPG
extends DQN to continuous action space by introducing another
actor network to pick the best action and using critic network to
update Q-values. A2C is a synchronous, deterministic
implementation that updates with the average over all of the
actors after all finish the experience.

IV. NEURAL NETWORK AGNETS IN CONTROL TASKS

We explore the effects of different neural networks in control
tasks. For continuous action space, we build and experiment
deep neural networks (Fig. 7a) with different layers (from single
layer to three layers) and different numbers of neurons (64 and
128). The training results are compared for the Walker2D
environment. We also implement a typical convolutional neural
network [4] to train agents on Atari Arcade games. In this CNN
model we use 3 Conv layers with strides followed by fully-
connected layers.

(a)
Hidden Hidden
Input Layer 1 Layer 2 Ourput
(b) /
Input — 4 —— Output
§
Conv1 Conv 2 Conv 3 FC1

Filter: 8x8x 32 Filter:4x4x 64 Filter:3x3 x64 512
Stride = 4 Stride = 2 Stride =1

Fig. 7 Schematics of (a) Deep Neural Network (DNN) and (b)
Convolutional Neural Network (CNN).

A. Deep Neural Network Agents

In an environment, where the observation can be encoded
into one-dimensional vectors, such as Roboschool control tasks,
deep neural network (DNN) is used in the control agent.
Exploration of DNN width and depth will be discussed in
Section V.

(a) . (b)
30 Average Reward per Episode (A2C) 2

Average Reward per Episode (DQN)

1.6
12

0.8

04 Environment = Atari-Breakout
Total Timestep = 6E6

Environment = Atari-Breakout
Total Timestep = 6E6

0
Training Episode

(c) (d)

Training Episode

. > Average Reward per Episode
Average Reward per Episode 1600 E
1800 (w/o Parameter Noise) (w/ Parameter Noise)
1200
1200 i =
Environment = HalfCheetah "°_’|[":e["fr' HatlfCh_eeZtah
800 Total Timestep = 2E6 goo otal limestep &

400 400
0 0

-400 -400
Training Episode

Training Episode

Fig. 8 Average reward per episode during training for (a) Atari-
Breakout CNN agent by A2C, (b) Atari-Breakout CNN agent by DQN,
(c) Roboschool-HalfCheetah by DDPG without parameter noise, and
(d) Roboschool-HalfCheetah by DDPG with parameter noise.

(a) (b)’5°° (c) v = (d) Ant Network: Hidden Layers = [64, 128, 128, 64
Ro . s Ant Network: Hidden Layers = [64, 64] P Ant Network: Hidden Layers = 128, 128] P []
boschool S 1000 a1 o'
Ant = - .
& s00 a s o
@ @ "
%" 3 3
& 4w o o«
o = =
9 1000 — . 9, — : 2
Z Training Episodes < Training Episodes B3 Training Episodes
(D 1200 (g) 1200 (h.)i?bﬂ
K] HalfCheetah Network: Hidden Layers = (64, 64] “ HalfCheetah Netwodk: Hidden Layers = [128, 128] 2 HalfCheetah Network: Hidden Layers = [64, 128,
& w0 o w900 128, 64]
g g g
a e o 2 60
w w L]
B 2 =
$ o g b
H v
x 9 < e
& . =
]
g 300 E <>(
Training Episodes Training Episodes Training Episodes
(l) Y 1 2000
v "8 \Walker2d Network: Hidden Layers =[64, 64] (v‘:) " Walker2d Network: Hidden Layers = [128, 128] (v') Walker2d Network: Hidden Layers = (128, 128,
a 2 a
w400 o 160 a 1600 128]
] - 1200 o 1200
@
‘: 1000 g Q
° % 800 -‘é’ 800
9 g0 3 o
3 g 400 3 400
< 1 1
- 200 < 0 ® 9
o = [
> o v
g . > 400 - - > 40
sl Training Episodes < Training Episodes <

B. Convolutional Neural Network Agents

In an environment, where the observation cannot be easily
encoded in to a vector, such as Atari Arcade games,
convolutional neural network that takes inputs of 2D images is
used in the control agent. In this project, we only applied the
CNN network structure reported in [4], because of limited
computing resources and time.

V. RESULTS AND DISCUSSIONS

Based on the environments in OpenAl Gym and the Stable
Baselines framework, we are able to explore different
reinforcement algorithms in different control tasks. Overall, we
have completed A2C and DQN training on Atari-Breakout,
DDPG training on Roboschool-HalfCheetah, Roboschool-Ant
and Roboschool-Walker2d, and their variations in neural
network structures. The results and discussions of these
experiments are summarized in this section.

A. RL Algorithm Dependency

According to our simulations, different reinforcement
algorithms lead to drastically different agent performance. For
example, A2C and DQN trainings are applied in Atari-Breakout
(Fig. 8a,b) in 6 million timesteps, and agents trained by A2C
and DQN give > 25 and < 2 average rewards per episode,
respectively. The reason for the weak agent by DQN is the
unoptimized hyperparameters. In other words, the training
efficiency is very sensitive to the hyperparameters and training
settings. Other experiments also support this in DDPG trained
Roboschool-Halfcheetah agent (Fig. 8c,d). There is a large
agent performance gap (average reward per episode: < 800 vs. >
1,500) for without and with parameter noise. The parameter

Training Episodes

Fig. 9 Average reward per episode during training for (a)-(d) Roboschool-Ant with DNN hidden layers = (b) [64, 64], (c) [128, 128] and (d) [64,
128, 128, 64], (e)-(h) Roboschool-HalfCheetah with DNN hidden layers = (f) [64, 64], (g) [128, 128] and (h) [64, 128, 128, 64], and (i)-(1) with
DNN hidden layers = (j) [64, 64], (k) [128, 128] and (1) [128, 128, 128].

noise is to implement noise in network parameters (weights and
biases) to more effectively explore the policy search space.

B. Network Dependency

Average rewards per episode during training are plotted for
Roboschool-Ant, Roboschool-HalfCheetah and Roboschool-
Walker2d with different DNN network widths and depths are
plotted in Fig. 9. There is an improvement of the average
rewards by increase the network width from 64 to 128, for all
the three environments, indicating the original hidden layers of
[64, 64] are not sufficient to provide the non-linearity in the
Roboschool control tasks. However, there is no obvious
improvement by increasing the depth of the DNN. We suspect
this is because of the less efficient training in back propagation
with deeper networks, in reinforcement learning, where training
dataset is limited.

VI. CONCLUSIONS

In this project, multiple reinforcement learning algorithms,
including policy gradient, DQN, A2C and DDPG, are explored
in training control agents for both discrete and continuous action
spaces, thanks to the availability of open-source frameworks
[51,[6]. It is identified that neural network agent and
reinforcement learning are necessary to train a strong agent in
non-linear control tasks. Reinforcement learning is sensitive to
the hyperparameters and training settings, according to
simulation results. Wider DNN is found to improve training
efficiency, whereas deeper DNN is not shown such benefits.

VII. CONTRIBUTIONS AND ACKNOWLEDGEMENTS

Shengjun Qin and Junkai Jiang shared joy of working
together and contributed equally to this project. The authors
would like to thank their TA Jay Whang for helpful discussions.

[1]

[2]

[3]

[4]

REFERENCES

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction
(Second Edition). Cambridge, MA: The MIT Press, 2018.

H. Mao, M. Alizadeh, I. Menache and S. Kandula, “Resource
management with deep reinforcement learning,” in Proceedings of ACM
Workshop on Hot Topics in Networks, Nov 2016, pp. 50-56.

J. Kober, J. A. Bagnell and J. Peters, “Reinforcement learning in robotics:
A survey,” The International Journal of Robotics Research, vol. 32, no.
11, pp. 1238-1274, 2013.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den
Driessche, et al., “Mastering the game of Go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484, 2016.

(5]

(6]

(71

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang
and W. Zaremba, “Openai gym,” arXiv: 1606.01540, 2016.

A. Hill, et al., “Stable baselines,” Github, 2018, https://github.com/hill-
a/stable-baselines.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver
and D. Wierstra, “Continuous control with deep reinforcement learning,”

in Proc. of International Conference on Learning Representations, 2016,
pp. 1-14.

