Using Satellite images to determine AQI values
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Abstract

In this project, deep neural networks are used in an attempt to predict Air Quality
Index (AQI) differences for pairs of satellite images where images are taken froin
the same location at different times

1 Introduction

The goal of our project is to develop a deep neural network to infer AQI (air quality index)[1]
based on a satellite image by providing a baseline satellite image and AQI data in the same region.
Since today, satellite images are more broadly available than AQI readings, having a model that can
determine AQI based on just a satellite image can significantly help people to monitor air quality in
their region without the need for a physical measuring station. Such a prediction model could be used
e.g. in regions that do not have an air quality reading station set up. With a one-time measurement,
residences of the area can receive information about the air quality in the area. This can be especially
helpful to the regions that have a long running air quality problems, such as China.

2 Related work

There is plenty of literature on using satellite to predict a plethora of different outcome variables.
However, the majority of said work falls under the category of image classification rather than
regression. We have picked out a selection of work that most closely relates to our goal and compared
them in the following paragraph.

Neal Jean et al. [2], utilized a multi-step transfer learning process to identify and extract nighttime
features from satellite images to predict poverty in certain regions. Their setup is similar to our
project since extracting night light imagery features depends on very small variations within the
picture, which is the goal of our project, too. Additionally, transfer learning is used in this research to
help with feature extraction and to compensate for incomplete survey data, similar to the research
that detects oil spill. Although we were able to obtain complete AQI data, we believe that transfer
learning can help to speed up our training process significantly.

Other work has used satellite images to perform oil spill detection [3], wheat yield prediction [4],
habitat mapping [5], biomass estimation [6] and vegetation height estimation [7]. For regression
specific problems [6][7], various regression schemes are used for the machine learning model with



Figure 1: The left most pictures shows examples of locations which planet images depict. The middle
image shows the locations of AQI measurements, and the left most image shows an example image
area matched to AQI data

(root) mean squared error ((R)SME) as an evaluation metric. This is similar to our project as we are
also trying to obtain a numerical output with different input images.

Other research at the interface of Deep Learning and satellite imagery falls under the category of
classification [4][5] or feature detection [3]. In general, while we’ve come across a substantial
literature body on satellite imagery, our team was not able to find research that attempts to predict
AQI values using satellite imagery.

3 Dataset and Features

A lot of time throughout the initial phase of the project had to be dedicated to pre-processing both
satellite imagery and AQI data. The satellite images were acquired from planet.com [8]. AQI data
was acquired from EPA [9]. We set up a three step pre-processing pipeline to retrieve and merge
image and AQI data effectively.

Before querying any API for either image or AQI data, we narrowed the scope of our search down by
defining a restricted geo-location and a restricted time period. Given the limitation and accessibility
of planets image data set, our team have decided to choose California as the main geo-location, while
limiting our time period to years after 2016.

Based on said geo- and date filters, we then queried both the AQI- and the image API. However,
we only retrieved metadata from the image API in order not to waste bandwidth and local storage
capacity, the geo-matching procedure is shown in Figure 1.

The image metadata contained all data points we need to match the available AQI data (see 1 for
reference) with the underlying geo-location and date of the images. Since we will be using a model
pre-trained on 200x200 images, however, we first need to subset the geo-location and pixel range in
the image metadata of our 5000x5000 images, before we can math both data sources.

PM2.! DAILY_AQI
Date 5 UNITS AQL Site Name STATE COUNTY | SITE_LATITUDE | SITE_LONGITUDE
Concentration VALUE
01/01/2019 57 ug/m’ LC 24 Livermore California Alameda 37.687526 -121.784217
01/02/2019 11.9 ug/m’ LC 50 Livermore | California Alameda 37.687526 -121.784217

Table 1: Example AQI data acquired from EPA

Mathching subset images and AQI data base on date and location gave us valid sub-image/AQI
matches. Based on this exhaustive set of image-metadata, we specified a representative test set of
images before we actually went ahead to download the underlying images in bulk.

The image api can simply be queried with a pre-composed list of image IDs that we obtain from the
previous step. We import these RGB images (.png) as 5000 x 5000 x 3 numpy matrices and split
them up into 25 distinct 200 x 200 x 3 matrices. For every particular geo-location, we then define one
anchor image and pair it up with other images from the same location but different dates. Finally,
these pairs get stacked together with their AQI labels to compose the dataset which we then divide
into a 20% test and 80% training dataset.



4 Method

Our team has decided to take the network developed by Neal Jean et al. [2] as the basic framework
of our neural network. The network contains 8 convolutional layers and a pooling layer at the end.
Since the goal of our project is to predict AQI values using baseline data that contains a satellite
images and AQI values corresponding on both date and location, we figured that the most effective
way to train the underlying model is to use a Siamese Network Architecture that discriminates the
difference between 2 input images. A Siamese network is a set up as 2 parallel convolutional neural
networks that noth use the same weights when 2 different images are passed through the network.
This makes sure that the network extracts features the same way for both input images. Our team
utilized transfer learning as we used pre-trained weights from the work from Neal Jean et al. [10], in
hope that the feature extraction characteristics of this legacy network can help our neural to augment
the difference between two input images with fewer training. An illustration of the neural network
can be seen in Figure 2.

In our neural network setup, the loss function
is defined as such: After two images have gone
through the Siamese Network, we concatenate
their flattened vector representations and feed
this one-dimensional vector into an additional,
one-layer neural network (i.e. dense layer with
linear activation and single output unit) to map
the vector towards a real-valued outcome label,
which will be the difference between the AQI
values of 2 images. We picked mean squared
error (MSE) as a loss function to train our model.
AQI values are defined on a range between 0
and 500, whereas higher values indicate higher
degrees of pollution. Hence, the predictions
we’re feeding into the loss function are defined
on a range between -500 and 500. The only
meaningful metric that lends itself to evaluate a model against such a real-valued outcome variable is
mean squared error (MSE). We have also determined that a batch size of 60 images (30 image pairs
and their opposite) and a learning rate of 0.01 with ADAM optimizer works the best in minimizing
loss compare to other hyper parameter settings.

Figure 2: An illustration of the neural network
setup

By training the network with this setup, our team hopes that we can accurately predict the difference
in AQI values between given images. A reference image can then be used to infer absolute AQI
values for any image in the same location without relying on a measurement station.

5 Experiments and Results

5.1 Training Acceleration

Our team decided to implement our code base using tensorflow [11] and keras [12]. In the beginning,
our team began to train the entire network without any parallelization (neither in the data pipeline,
nor in the training process itself). With a total of more than 300,000 pairs of labeled training
images, this approach was hardly feasible in the finite amount of time we had. Especially the
batch-wise pre-processing of every 60 image batch took way too much time (about 5 minutes per
batch). By leveraging keras’ sequential interface [13], we were able to parallelize both pre-processing
and training the network, which helped us iterate faster while optimizing other parts of the model
architecture and the training process.

5.2 Improvement of Training Predictions

The initial predictions we got after having training the full model using entire data set for around 20
epochs were hardly meaningful in the sense that they were not even close to the actual AQI deltas
(MSE > 500). Hence, we discussed our observations with members of the teaching team and came up
with four measures to help guide the network closer towards a meaningful range of predicted values.



Given the empirical distribution of AQI deltas (Figure 3),
the network should have the tendency of predict small
AQI deltas for any given image pair. To leverage this in-
tuition in favor of making faster learning progress, first, o
we selected highly skewed training data to more forcefully
manipulate the legacy knowledge of the pre-trained net-
work. Highly skewed in the sense that we only provide
the neural network top 10% subset of our training data 20000
that has the highest AQI delta. Second, instead of using ol
a linear activation function in the output layer, we used a 00 =50 o s 100
scaled sigmoid function (i.e. f(z) = o(z) * 300 — 150).

A scaled sigmoid function is much more sensible to pre- Figure 3: Empirical distribution of AQI
dictions that are close to zero, which corresponds very delta of the training set

naturally to the empirical distribution of our data. In here,

we only scaled the sigmoid function by 150 since there are rarely high AQI deltas in our training data
set as shown in Figure 3. Third, we freezed the first six pre-trained layers of our network so that we
have fewer high-level parameters to train but instead have the network focus on learning lower-level
features that are more meaningful to our particular prediction task. Fourth, we added two additional,
sigmoid-activated dense layers to the end of our network for it to learn more complex relationships
between the images’ vector representations and the AQI deltas. This last part of the architecture was
inspired by a blog post written by Kevin Mader [14], who used this type of prediction head to gauge
image similarity on the MNIST data set. All the above features are added after training results show
that the loss are not decreasing, or decreasing relatively slowly.
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5.3 Improvement of Validation Predictions

With the adjustment made to the neural network mentioned in subsection 5.2, our team was able to
minimize loss on the training set. However, when we observed the predictions from the half-freezed
network which we trained on the skewed training data using the scaled sigmoid activation and a
different prediction head, we immediately observed that we were running into substantial overfitting
issues. While our training MSE had come down to 100, our validation MSE was stuck at 800. To
counter overfitting, we decided on using two different forms for regularization. First, we added 0.2
dropout layers to the non-pretrained part of our network. Second, we added back random samples to
our training data so that we had 50% images particularly with high AQI deltas and 50% images that
came from the default training data distribution. With these regularization method implemented, our
team observed that the validation set loss has successfully decreased over epochs (Figure 4).

5.4 Model Evaluation

To evaluate our trained neural network, we created a
fresh sample of 18,900 labeled image pairs that are
fetched from the planet [8] database separately. We .,
ran predictions on these images and benchmark the
resulting MSE against both, a meaningful baseline 1200
predictor (human performance) and the distribution
of the outcome variable. 1000
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The prediction task we are solving is extremely hard e
even for humans to do. From the image pair in Fig-

ure 5, it is easy to see that the human eye can hardly o
tell which image has better air quality, while it is

even harder to determine the difference in AQI val- b T - T T z
ues, whereas the AQI values between these images Time (i.e. Number of Epachs)
actually differ by 41 (i.e. air quality on in the left
image is much worse than on the right).
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Figure 4: Training- and Validation loss for the
Therefore, we assume for our benchmark predictor Final Model Architecture

to behave closely to a human who knows about the

empirical distribution of AQI deltas and when looking

at these image paris, guesses the AQI difference randomly, based on his knowledge about the



underlying distribution. Hence, to come up with a corresponding baseline predictor for our test set
(i.e. 18,900 images), we sampled 18,900 AQI deltas from the empirical distribution of our 300,000
training samples (Figure 3). This relatively profane approach yielded a baseline mean squared test
error of 1231.53.

We trained the final model architecture (i.e. 3-layer
prediction head, dropout, scaled sigmoid) on our entire
training set of around 300,000 image pairs for a total
of 30 epochs. Over those epochs, we observed a con-
stantly decreasing training loss (MSE) from > 1376 after
the first epoch to 421 after the last (i.e. 30*") epoch
(Figure 4). At the same time, we saw the gap between
training and validation loss to remain far lower com-
pared to when we had not applied any regularization.
Quite disappointingly, however, the trained model was
not able to get both training and validation loss down Figure 5: An example of training image
to meaningful levels as the validation loss plateaus and  pairs. The right image’s AQI is 41 higher
oscillates after 20 epochs. Talking from these validation than the left image’s

results, we were not surprised to see a test error as high

as 1041.38, which indicates that we still have a huge

bias problem in our model and training data. The three image pairs below exemplify why it would
require much more time and training (data) to use satellite images and make meaningful predictions
for AQI values. There are so many different types of landscapes, shades, and outlyer conditions (e.g.
cloudy images) that make for a very fat-tailed distribution of the true image and AQI data.

6 Conclusion/Future Work

As mentioned in section 5, our model only performs
slightly better than the baseline predictor. This can be at-
tributed to a number of reasons. Firstly, satellite images
varies widely and can be drastically different even with
the same AQI values due to clouds, landscape changes
and time of the day. A lot of additional traing data ~* * * * *
might get the network network to a broader range of

conditions. On the other hand, we could also narrow

the purpose of our model to very specific conditions (i.e.

no cloud, mid-day) and adjust training AND test data
accordingly. Then, however, the training results won’t

be as meaningful and limited in their applications by Figure 6: Image pairs illustrating problem-
default. atic conditions for the NN to grasp.

AQLDelta (Truth): 60 AQ-Delta (Pred): -46.4748
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There are also various hyper parameters that can possibly
improve our model. For example, adding more layers with a different activation functions after the
Siamese Network might help learn more complex features.

7 Contributions

Each team member made solid contributions to this project. Simon contributed on data processing
and -acquisition, including downsizing images, matching AQI data, and building up the sequence
training pipeline. Simon also assisted with research on network architecture and performed analysis
on our results.

Michael contributed through research on topics, idea generation, including literature research, finding
weights and consulting with members from Stanford sustainability and artificial intelligence lab. He
also assisted with developing the code base.

Sean contributed on pre-processing AQI values from EPA. He also contributed on creating the training
pipeline, fine-tuned the network architecture, and was leading cloud deployment and parameter tuning
when training the model.
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