Image Captioning with Sequence Encoding/Decoding
Boyu Zhang (SUNetID: bzhang99) Mayukh Roy (SUNetID: rmayukh)

1. Abstract:

In this paper, we are implementing an Image Captioning Model which will convert any input image
to a descriptive sentence. Image Captioning can be used in various applications such as a
cellphone application to describe surrounding scenes for blind or visually impaired people. We can
also use this model to generate video captions for IP cameras which can be used to detect
abnormal activities and raise alarm immediately. Searching photos within album app can also
benefit from this model since it will be as easy as searching keywords among sentences. In this
model we use an Mask-RCNN Encoder to detect images instead of a regular CNN such as ResNet
or Inception as found in most of the baseline models and prior works. Image detection allows us to
identify different parts of the image and this is very useful since we are also implementing an
Attention Model which can then focus on these individual detected objects instead on the whole
image. Using this attention model along with GRU decoder we can then generate the sentence
associated with the image. We also use Beam Search in our prediction model to achieve improved
results and the results were measured having BLEU Score as the evaluation metric. Using our
model we were able to improve on the Baseline model and achieve better BLEU Score.

2. Related works:

Encoder and Decoder based captioning

Inspired by machine translation, a typical way to do image captioning is to use an encoder and
decoder model. The encoder is a CNN which converts input picture to a feature vector. Decoder is
an RNN which then generates the captions based on image feature vector. [1]

ENCODER

/
—X
) |
i
E
]
| &
)
)
) J

en
-

/
i

("thought vector)

DECODER

(Figure 1: traditional encoder decoder model

source:nips:

Attention based captioning

The problem of the previously described model is the feature vector that CNN generated
represents the whole input picture. As a result when the RNN is generating each individual word in
the sentence, it is looking at the whole picture. This is inefficient and can also sometimes lead to
wrong results. In Xu’s paper [2], this problem was mitigated by adding an attention layer between
encoder and decoder. The attention layer is a small neural which can learn where to focus in the
picture when RNN is generating the target word.

Sequence based captioning

The other problem of the base CNN+RNN model is the imbalance between the representation of
the image and the representation of the words. The RNN decoder is generating the caption
sentences in different time steps, however the CNN feature of the image is one time step only. In
Chang'’s paper [3], in order to fix this problem, an image is converted into a sequence of detected
objects using object detection model. The encoder is changed from CNN to R-FCN. In this way, a

sequence of objects can be translated to a sequence of words using the same model as machine
translation.

3. Dataset:
Our dataset is from COCO, where we are getting large scale of images along with multiple
captions corresponding to each image. We had a total of 406,095 data points (image, caption pair)
with 81219 unique images in total. 80% of the total data was allocated to the training set while 10% of it
was used as the validation set and the remaining 10% was assigned to test set. The training set
consisted of images with multiple captions while validation and test sets only had unique only
image/caption pairs to avoid getting duplicate results. We also used 80/10/10 split instead of 60/20/20
to ensure the training sets represent a wider range of images so the model can train and identify as
many objects from the images. Here are some examples of images and captions:

Image A Image B Image C
<start> Children are playing baseball on a muddy baseball diamond <end> (Caption A1 for Image A)
<start> A purple bus and a man dressed as a nun on a tall bicycle <end> (Caption B1 for Image B)
<start> A child waits for a pitch during a game of baseball <end> (Caption A2 for Image A)
<start> a wine glass sits in front of some plates of food <end> (Caption C1 for Image C)

The <start> and <end> token in the example above were added as part of the pre-processing steps. All
the caption sequences were padded so that they have the same length. For the images, the
preprocessing steps included resizing them to 299 pixel by 299 pixel and then normalizing them so that
they contain values between -1 to +1.

4. Model:
In our project, we follow a similar idea of sequence based captioning, and added an attention layer
between two RNN networks to increase accuracy.

Attention Cell

GRU GRU GRU GRU GRU GRU
w0, w0, WO, w,s, w,s, WS,
Encoder Decoder

(Figure 2: Encoder/Decoder of our model)

Sequence representation of images

In order to get a sequence representation of the input image, we run object detection on it. The
object detection model we chose is Mask-RCNN. It is a region based object detector. The model
first uses a CNN to extract CNN features from the input image, then it uses an RPN(region
proposal network) to determine the region of interest(ROIs). These ROIs are then combined with
the corresponding CNN feature map to form patches for object detection. Using ROI pooling these
patches are converted to have the same dimension. The patches are then passed onto fully

connected layers to obtain their object category and confidence level. We keep all the patches with
confidence level higher than 0.7 and form a sorted list based on the confidence level. We also add
the CNN feature of the whole input image at the end of the list. The list of these patches of
dimension 7*7*256 forms the sequence representation of one input image. We limit the number of
detected objects to be 40.

region proposal network

_’;:r;v*E
m

ﬂ—'

/4

convolutional network

source nlps:

The image sequence can be represented as the following sequence.
W,0,te(1,2,...T,)

Here We is the embedding matrix, O, is the CNN feature of t-th object given by the Mask-RCNN
model. T4 is the maximum length of the input sequence.

Sequence representation of the captions

We tokenize all captions by providing each unique word an index including the <start> and <end>
which were mentioned in the Dataset preprocessing step. The target caption sentences are
presented as follows:

WS, t€(1,2,...,T)

Here Wais the embedding matrix, S: is each word in the caption represented by a one-hot vector

T

with dimension of total vocabulary size. * B is max length of all captions.

Encoder and decoder with attention layer
We use two GRUSs as the encoder and decoder for our model to translate input sequence to output
sequence. GRU was chosen over LSTM because it was simpler and faster to train.

The attention mechanism we use is bahdanau attention[4]

ot -

SOFTMAX

Y1 Y3 Y2 \z

(Figure4: Bahdanau Attention

source: https://blog.heuritech.com/2016/01/20/attention-mechanism)

Pseudocode is the following:

score = FC(tanh(FC(encoder_output) + FC(hidden_state)))
attention weights = softmax(score, axis = 1)
context vector = sum(attention weights * encoder_output, axis = 1)

5. Hyperparameter tuning:

Following hyperparameters were tuned: mini batch size, learning rate and hidden unit size. We use
a grid search to try all possible combination between these hyperparameters. We tried all 36
parameter combinations with below values:

Mini-batch size: 16, 32, 64, Learning rate: 0.1, 0.01, 0.001, 0.0001, Hidden unit: 256, 512, 1024

Plot of all 36 combinations using Tensorboard (y-axis: Loss, x-axis: #of Epoch):

loss

loss
tag: loss
1.3
12
11
1
0.9

0.8
0.7

0 1 2 3 4 5 6 7 8 9 10

-1

I

ra
La

The combination of (Mini-batch = 64 Learning rate = 0.001 hidden unit = 512) gave the lowest loss
after training over 10 epoch.

To avoid overfitting, we also tested number of epoch from 0 to 20. After each epoch we calculated
the bleu score of the output sentences using validation set. After epoch 18, the average bleu score
of validation set starts to decrease, so we stop training at epoch 18.

6. Results and Analysis:

We calculated the average BLEU score of the generated caption compared to reference captions
across all the test sets for our model and the baseline model. As seen in the table below, our
model outperformed the baseline model.

Model Bleu_1 Bleu_2 | Bleu_3 Blue_4
Baseline model with CNN encoder 0.495 0.337 0.221 0.145

Our model 0.683 0.514 0.371 0.264

Also shown in the left is the
output of Mask-RCNN model.
We print out the attention
matrix at the time our model
was generating captions for this
image. The output sentence is
“a man riding a wave on a
surfboard”. From the attention
matrix, we can see when the
model is generating word
“‘man”, it pays more attention to
the first detected object

personl person2 surfboard] surfboard2 predicted sentence:

Greedy search: “person1”, and when it is

a man riding a wave on a surfboard generating the words “wave”
Beam search: k = 3 B .

a man riding a surfboard in the ocean and “surfboard”, it pays more
Beam search: k = 8 attention to the third detected

a man on a surfboard riding a wave object “surfboard 1”. The model
Reference: doesn’t pay attention to the

1. Ayoung man riding a wave on a boogie person and surfboard in the

board. i i
2. A man riding on top of a wave with a baCkgTounq' Thl,s 'S d _deSIred
surfbaard. behavior, since in all five
3. A young man having fun riding a wave to reference captions none of
the shore. :
4. A man surfs on his surfboard in the water. Thii. enton th? GfEr PErEen
5. A boy is falling off of a surfboard in the or the surfboard in the
water. background.

Attention plot

7. Future works:
In this project, we are inspired by Chang’s paper to change the traditional CNN encoder to an
object detector encoder. In this way, the input of the model is not the input image itself, but a
sequence of objects detected from the image. We also add a attention layer between encoder and
decoder to make sure the decoder is using the right object to generate the right word. Although our
model has better BLEU score than the baseline model, it is not as good as other models on COCO
leaderboard. In the future we can improve our model in the following ways:
1. The Mask-RCNN model we use can only detected 80 kinds of objects. We can re-train the
Mask-RCNN to detect more objects.
2. Number of objects vary from image to image. We can group images having similar number
of objects and train in buckets instead of padding all input sequences to have same length.

8. Contributions:
Each group member contributed to the project equally.
Github repository: https://github.com/spacetaro/image_caption

Reference:
1. [1] Vinyals et al. (2014). Show and Tell: A Neural Image Caption Generator. [Online] arXiv:
1411.4555

2. [2] Xu et al. (2015). Show, Attend and Tell: Neural Image Caption Generation with Visual
Attention. [Online] arXiv: 1502.03044

[3] Liu et al. (2017). MAT: A Multimodal Attentive Translator for Image Captioning. [Online]

arXiv: 1702.05658
[4] Bahdanau et al. (2014). Neural Machine Translation by Jointly Learning to Align and

Translate. Online] arXiv: 1409.0473

