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Abstract— In this work, we study the use of Generative
Adversarial Networks (GAN) to attack a state-of-the-art (SOTA)
traffic sign recognition (TSR) classifier used for autonomous driving.
Using GAN, we generate inconspicuous adversarial perturbations to
traffic sign images and feed the perturbed images to the TSR
classifier in an attempt to cause targeted misclassification and a
reduction in the accuracy of the classifier. We also study the effect of
various hyperparameters on the overall performance of the GAN,
resulting in an optimized model that achieves a significantly high
misclassification of 82.9 percent, reducing the test accuracy from 92.1
to 17.4 percent.

Index Terms—Autonomous Driving, Generative Adversarial
Network (GAN), Neural Network

1. INTRODUCTION

SAFETY is the most important aspect of autonomous driving.
Machine learning (ML) algorithms employed in self-driving
units thus need to be robust against adversarial attacks. One of
these ML algorithms is the traffic sign recognition (TSR) which
interprets the traffic signs seen on the road. In this study, we use
Generative Adversarial Networks (GAN) to attack a state-of-the-
art (SOTA) traffic sign recognition (TSR) classifier. The results
give us insights on the sensitivity of the TSR classifier to
adversarial attack as well as possible ways to increase the
adversarial attack success rate or to improve the robustness of TSR
against the GAN attack.

Our model contains two networks working in tandem — one
GAN network with a generator linked to a discriminator and one
target network that we plan to attack. The target classifier is
trained to recognize various traffic signs. We feed the generator
an image from one class, e.g. a stop sign, and use the GAN to
perturb the image until the target classifier misclassifies the image
as another sign, e.g. a speed limit sign.

The structure of the classifier network is based on a LeNet-5
model implemented by Mohammed Ameen who was able to see a
validation accuracy of 95.3% on the German Traffic Sign (GTS)
dataset [1]. Xiao et al. used a GAN to generate adversarial
examples against an MNIST classifier in 2018 [2]. Their GAN,
called AdvGAN, applied perturbations and generated examples
that were used to perform white-box, semi-white-box, and black-
box attacks. We will use a similar structure, applied to this new set
of traffic sign classes. Varying the hyperparameters of the GAN
network, we then optimize for highest attack success rate and
misclassification. Finally, we provide suggestions on how to
increase the classifier robustness against the GAN attack.

II. DATASET

In building our target classifier, we used the German Traffic
Sign (GTS) Dataset which contains more than 50,000 images in
43 unbalanced classes [3]. Image sizes vary between 15x15 to
250x250 pixels (RGB). All data were converted to 32x32 RGB
images. The data was divided into 67% training, 8% validation,
and 25% testing datasets with relative class size remaining
constant in each set (See Fig 1).

A. Data Preparation and Preprocessing

Our original intention for the target network was to include a
class called “not a sign” to make sure we were not forcing the
target network to choose a sign class based on an image that no
longer looked like a sign. We later decided to keep the
perturbations small in the GAN so that the generated images
would still look like a sign (specifically the original sign class) to
a human, and remove the “not a sign” class, as explained in the
next section.
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Fig. 1. Histogram representation of class distribution in the German Traffic
Sign dataset’s training, test, and validation sets.

To make the dataset with the “not a sign” class, we took a
random assortmenet of images from the CIFAR10 dataset [4],
32x32 RGB images, assigned them all the same class label, and
added them to the GTS dataset while keeping the relative class size
the same. All images in the training set were shuffled to increase
randomness. Then images from every set were normalized and
grayscaled, reducing image size down to 32x32x1. Sermanet and
LeCun found that grayscale images were classified more
accurately by convolutional networks [5]. However, we also fed
color images to test this hypothesis, as explained in the
experiments section.

III. METHODS
A. 3-Class Classifier with CIFARI10

The structure of our network is based off a LeNet-5 model
implemented by Mohammed Ameen who was able to see a
validation accuracy of 95.3% on the GTS dataset [1] (see Fig 2).
As a preliminary step, we decided to choose two sign classes (a
circular sign that read 30km/hr and a triangular road work sign) as
well as the “not a sign” image class. This smaller dataset had only
a training set and a test set (70/30 split). While we found we could
overfit the model, we quickly realized this model was not learning
to distinguish between the two signs and the random images that
made up the “not a sign” dataset. As seen in Table 1, the test
accuracies for every optimization attempt remained at 36.84%
(exact up to the 15 decimal places output by the model). This
suggests that the model was simply choosing one class to guess



instead of looking for deeper features in the images. The only time
this changed was when the Adadelta optimizer was used instead
of Adam, but even that only raised the accuracy to 42.21%.
Plotting the test loss also suggested strong issues with the model
because every attempt had high loss rates and big fluctuations
between epochs.
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Fig. 2. LeNet-5 architecture used for the 3-class and TSR classifiers

tell the original class label.

B. Traffic Sign Recognition (TSR) Classifier

Focusing solely on the 43 traffic signs, our results improved
dramatically as we expected. Using the training, validation, and
test sets described earlier, we trained a few variations of
classifiers. The base model was the model used by Mohammed
Ameen which implemented the Adam optimizer with a learning
rate of 0.001 as well as a dropout of 50% for every fully connected
layer and a dropout of 30% for every convolution layer. While he
reported a max validation accuracy of 95.3%, we only saw 91.8%.
This discrepancy may be due to an additional preprocessing step
in Ameen’s model, not implemented in ours, which involved local
histogram equalization (enhancing images by spreading out the
most frequent intensity values). However, a few modifications to
the model conditions brought our validation accuracy up to 94.5%
with a test accuracy of 92.1%. For our purposes, and considering
the large number of classes involved, these accuracies are enough
to move forward with this as our target network that we will attack.
Time permitting, we can return and improve the TSR model even
more to challenge our GAN.

Our target classifier network used a batch size of 64 along with
50% dropout on all layers (in the training set only). The Adam
optimizer with a learning rate of 0.001 was found to be a
successful choice (Table 2). The confusion matrix for this final
network is seen in Figure 3.

We also developed our own fully connected classifier that has TSR Model Description Validation Test
one hidden layer of 25 units and ReL.U activation function, and Accuracy | Accuracy
softmax activation function for the output layer. Although more Base model: Adam optimizer, learning | 91.8% 89.9%
. . . . = 0,
accurate, as seen in table 1, it still suffers from overfitting. rate =0.001, 50% dropout on FC layers,
30% dropout on Conv layers
3-Class Model Description Train Test Adadelta optimizer, learning rate = 1.0, 88.6% 87.9%
Accuracy | Accuracy 50% dropout on FC layers, 30%
Base model: sparse categorical cross | 99.98% 36.84% dropout on Conv layers
entropy, Adam optimizer, 1r=0.01 Base model + 40% dropout on FC 93.8% 91.2%
Base + 25% dropout before FC1, 25% | 92.54% | 36.84% layers, 20% on Conv layers, batch size
before FC3 of 64
Base + 25% dropout before FCI, 50% | 87.42% | 36.84% Base; szl -+ S04 droport on mll | 84.3% 92.1%
before FC3 layers, batch size of 64 (chosen model)
: Table 2. Model iterations for the traffic sign recognition classifier
Categorical cross entropy, Adadelta
optimizer, 1r=1.0, 25% dropout before | 80.69% | 42.21% We also studied the significance of each fully connected layer
FCl and FC3 : : by monitoring how the test accuracy, recall, precision and F1 score
In-house FC classifier, categorial cross . . change as we remove each fully connected layer from the neural
entropy: Adam optimizer, Ir = 0.00001, 100% 54.26% network. The results are shown in table 3. As can be seen in table
L2 regularized (A =0.1)

Table 1. Various attempts to classify the 3-class classifier

We also ran the full GTS+CIFAR10 dataset on these models
and saw the test/validation accuracy drop to 7.8% and remain there
for each iteration with the loss again seeing big variations. To
combat this issue, we re-evaluated whether these random images
would be necessary. Their purpose was to ensure that the classifier
had another option if it did not believe the input image looked like
any of the signs it learned because we feared the GAN would
generate a very noisy image that would not fit into any of the
classes, but may be forced into one since the classifier had to
assign probabilities to it based on the classes which it knew. Then
we restructured our attack plan so that the images put into the
generator would start as one of the traffic sign images and only
small perturbations would be allowed. In this way, the image will
not be allowed to get so noisy that, for instance, a human could not

3, removing FC layers 1 and 2 has nearly the same small effect on
model performance, reducing all metrics by about 1 percent. This
demonstrates the low significance of these layers compared to the
preceding convolutional and pooling layers.

Log of normalized Confusion Matrix
| |

True label
R 8
k.
"
.
-
-y
< -
1 5
"
.

0 10 20 30
Predicted label

Fig 3. Confusion matrix for our target network
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TSR Model Test Test Test Test
Description Accuracy | Recall | Precision | F1 score
Optimized Model 92.1% 92.94% | 93.21% 92.91%
Optimized Model 91.1% 91.79% | 92.37% 91.71%
w/o FC layer 1

Optimized Model 91.0% 91.69% | 92.38% 91.72%
w/o FC layer 2

Table 3. effect of removing each FC layer on ovrall the model performance

C. AdvGAN

Xiao et al. used a GAN to generate adversarial examples against
an MNIST classifier in 2018 [2]. Their GAN, called AdvGAN,
applied perturbations and generated examples that were used to
perform white-box, semi-white-box, and black-box attacks. We
will use a similar structure, applied to this new set of traffic sign
classes.
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Fig 4. Overview of AdvGAN [2]

In order to opimtize the GAN in the model, the losses include
generator loss and discriminator loss. These losses are in direct
competition with each other when both are minimized as the
generator is trying to create images that fool the discriminator and
thus reduce generator loss while the discriminator is trying to
correctly determine whether the image is real or generatoed,
minimizing the discriminator loss. Specific to this AdVGAN
model, we also include a perturbation loss and an adversarial loss.
Minimizing the perturbation loss reduces the amount of noise that
is added to the image to hopefully find the lowest perturbation
noise which will lead to misclassification. The adversarial loss
comes from the pretrained target classifier when real and fake
images are passed to that classifier. Adversarial loss increases
when the fake image is classified correctly rather than
misclassified. Thus minimizing this loss should result in more
misclassifications. More details on the AdvGAN model such as
the definition of loss functions can be found in reference [2].

IV. EXPERIMENTS

In this section, we study the effect of input image (color vs.
black & white) as well as various GAN hyperparameters on the
attack success rate, misclassification, and various losses used in
the GAN design. The metrics studied include test accuracy and
misclassification percentage in addition to the four distinct losses
in the AAdvGAN. In contrast to many machine learning models,
this AdvGAN is seeking to decrease the test accuracy of the target
classifier. Therefore we use this final test accuracy in comparison
to the initial test accuracy as a metric to determine how well the
model is performing.  Another important metric is the
misclassification percentage. This first tests the model with the
original, unperturbed image. If this original image is
misclassified, it is not included in the list of images that will be
perturbed as it is an image that the classifier already cannot
classify properly. If the real image is classified correctly intitially,

then perturbations are added to the image and the target model is
tested once again. If the model then misclassifies the image, that
image is included in the misclassification percentage. This metric
has the advantage of not double-counting those images which the
model would have misclassified initially and thus acts a true
success rate for the adversarial attack. Only images that were
misclassified due only to the adversarial attack were output for
visual inspection.

When looking at the loss mechanisms in the model, we expect
to see the generator and discriminator losses working against each
other and thus their losses should show almost a reciprocal
relationship. The perturbation and adversarial losses should
decrease over time if the model is learning.

A. Color Vs. Greyscale Images — Perturbation Threshold

Visual inspection of the color and greyscale images before
perturbation show a lot of noise already in place, likely due to
resizing and image resolution issues. Further perturbations on
these images look, to the human eye, similar to the original or
much worse based on how noisy the original image seemed as well
as the perturbation threshold — the amount of perturbation that was
allowed to be added to the original image (Figure 5).
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Fig 5. GAN output for both greyscale and color inputs at various perturbation
thresholds.

We noticed that, visually, the perturbed greyscale images
looked more noisy than the color images. We ran an experiment
to see if the AdvGAN model also saw this difference between
greyscale and color images. As expected, Figure 6 shows that
increasing the perturbation threshold of color and greyscale
images increased the perturbation loss and decreased the
adversarial loss. This decrease in adversarial loss is expected
because images with more perturbations should be harder to
classify, resulting in more misclassifications. This should also
increase the misclassification percentage and decrease the test
accuracy, both seen in the figures above. The discriminator loss
in both figures also shows a large drop when perturbation



thresholds are increased as the discriminator is better able to
classify the noisy perturbed images as fake.
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Fig 6. GAN performance metrics vs. perturbation threshold for greyscale and
color input images

Contrary to our original hypothesis, there were no significant
differences in model performance for color versus greyscale
images, as seen in the figures above. Moving forward in our
analysis, we chose to study the effects of different parameters on
color images because these experiments resulted in better human-
evaluated image quality. In selecting the perturbation threshold,
we wanted to make sure the model was producing images that
would be distinguishable to the human eye — i.e., a human could
still correctly classify the image. Keeping this in mind, we chose
a threshold of p=0.05 which also produced a relatively high
misclassification in our testing runs, after which the
misclassification starts to saturate.

B. Weighted Loss Mechanisms

In order to get a low test accuracy after perturbation (and
similarly a high misclassification percentage), the adversarial loss
should be minimized as much as possible. One way to emphasize
the importance of this loss is to apply a weight to it in the overall
cost function. However, perturbation loss is also important
because we would want the images to be indentified as the correct
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sign if a human were looking at it. To determine the optimal
balance, we tested different adversarial:perturbation weighted loss
ratios.

As Figure 7 shows, there was a slight decrease in test accuracy
and likewise a slight increase in misclassification percentage as
we increased the weight on the adversarial loss variable.
However, this saturates very quickly around 5:1. As expected, the
discriminator loss decreased at higher adversarial:perturbation
loss ratios because the perturbation loss was increasing,
suggesting that the images were more noisy in higher ratio runs.
The lowest test accuracy and highest misclassification occurred at
aratio of 10:1, so this is the ratio we chose for our optimal model.

GAN Performance Metrics vs. Adversarial Loss:Perturbation Loss Ratio
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for color input images

C. Generator:Discriminator Learning Ratio

Generator:discriminator learning ratio is the number of
iterations the generator is trained for every one iteration the
discriminator trains. Increasing this ratio is supposed to make
generator more competitive with the discriminator, resulting in
reduced generator loss and increased discriminator loss. Although
this was the effect observed at a ratio of 10:1 (Figure 8), an
opposite trend is seen for ratios of 3:1 and 5:1. Overall, increasing
the generator:discriminator learning ratio deteriotates the GAN
performance, resulting in a large decrease in misclassification.
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D. Size of Generator Filters

As can be seen in figure 9, increasing the number of filters in
the three convulotional layers of generator had a moderate effect
on the generator’s ability to learn, with optimum performance —
highest misclassification — at 16/32/64 filters among the three
encoder and decoder layers with a resnet block of 64 filters in
between. Increasing the number of filters from 8/16/32 to
16/32/64 increased the number of epochs before the discriminator
completely won the generator-discriminator battle.

GAN Performance Metrics vs. Number of Generator Filters
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Fig 9. GAN performance metrics vs. number of generator filters

E. Optimum Results

Our analysis revealed that the optimal parameters would be
using a perturbation threshold of 0.05, a 10:1
adversarial:perturbation weighted-loss ratio, 16/32/64 filters in the
generator, and a 1:1 generator:discriminator learning ratio. A 400-
epoch run with these parameters is shown in Figure 10 revealing
decreasing losses that seem to flatten out around 100 epochs. The
test accuracy and misclassification percentage also reveal
expected results with the test accuracy decreasing as
misclassifications increases over those same 100 epochs. These
values also saturate around 100 epochs. The lowest test accuracy
was 17.4% while the highest misclassification was 82.9%.

Figure 11 shows some of the generated images using the
optimized GAN along with the original images. Actual and
predicted labels are shown above each image.

V. CONCLUSIONS & FUTURE WORK

In this work, by developing an optimized GAN, we generated
inconspicuous adversarial perturbations to traffic sign images and
fed the perturbed images to a TSR classifier, reducing the
classifier test accuracy from 92.1% to 17.4% and resulting in a
significantly high misclassification percentage of 82.9%.

As our adversarial attack model shows, there are vulnerabilities
in traffic sign classifiers that may be exploited by malevolent
parties. If a similar attack were conducted on the classifier used
in an autonomous vehicle, the vehicle may, for instance, classify a
stop sign as a speed limit sign. Such occurrences are big safety
risks. To mitigate the effect of these attacks, autonomous vehicle
software should include perturbed images in the training set for
their traffic sign recognition classifier. Another solution is
defensive distillation [6] which smooths the model's decision

surface in adversarial directions that could be exploited by the
adversary.
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Fig 10. GAN performance metrics over epochs for the oprimized model
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Fig 11. Example generated images using optimized GAN along with the original
images to their left. Actual and predicted labels are shown above each image.
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