Predicting the Rating of a Company Using Employee Reviews

Aaron Marks
Department of Computer Science
Stanford University
aamarks@stanford.edu

1 Introduction and Motivation

Using natural language processing on consumer
reviews, whether they are movie reviews, Amazon
reviews, workplace reviews is a common occur-
rence in studying sentiment analysis. This project
seeks to use natural language processing tech-
niques, including sentiment analysis, to predict
employee happiness and satisfaction in the work-
place. Many job seekers use the website Glass-
door to learn about employees’ experiences at dif-
ferent companies before deciding to apply or ac-
cept job offers. Since the job seeker isn’t asking
an current or former employee is person what their
experience was its important to be able to derive
meaningful sentiment from the text reviews left on
Glassdoor.

We are looking to explore different models
to take reviews scrapped from Glassdoor and
use NLP techniques to predict the employee
satisfaction at a specific firm. Workplace text data
is different from other types of sentiment data due
to the industry specific and firm specific jargon
used in reviews. One of the aspects of NLP we
will be exploring vector space models in order
to account for the specific jargon and word use.
This will come in the form of using pre-trained
word representations such as GloVe and Bert
as well as building our own Word2Vec from
our own dataset. In addition to this we will be
experimenting with several deep learning models,
both convolutional neural networks and recurrent
neural networks. The input to are algorithm are
company reviews by the employees and the output
is the overall rating for the company.

2 Data

This data is scrapped from Glassdoor, an em-
ployee review site, and has been posted publicly

Dhruv Kedia
Department of Computer Science
Stanford University
dkedial@stanford.edu

on Kaggle. This dataset is composed of 67k em-
ployee reviews for Google, Amazon, Facebook,
Apple, and Microsoft. Here is a heatmap show-
ing the distribution of reviews of firms and their
ratings:

Figure 1: Data Heatmap: Firm vs Overall Rating

Overall Ratings of Companies in %

o- 93 37 3 2 36 15
o- 10 63 31 32 73 14
w N
o
<
fo- 2 17 6.2 98 2 16
ﬁm
o
8
o kS 15 29 b3
=

|
amazon

5.0

]] \ i]
apple facebook google microsoft netflix
company

These are all the associated values for each
review: Company name, Location, Date Posted,
Job-Title, Summary, Pros, Cons, Advice to Senior
Management, Overall Rating (1-5), Work/Life
Balance Rating (1-5), Culture and Values Rating
(1-5), Career Opportunities Rating (1-5), Comp &
Benefits Rating (1-5), Senior Management Rating
(1-5).

The text data comes in four sections: Sum-
mary, Pros, Cons, and Advice to Management. We
will begin by just using the summary for sentiment
and will explore the other text sections later on.
For the milestone, we are only looking to predict
the Overall Rating.

In addition, we ensured that a random 95.0%
of the data set was set aside for training, 2.5% for
validation and 2.5% for test. The reason we chose
to use an this split is because our dataset is rela-

-45

-15

tively large and around 1650 examples are enough
for validation and testing. The rest of the exam-
ples will be more helpful for the model to learn
and train.

We also took some steps to pre-process the
data. To begin with we removed all comments that
did not have a summary or the summer value was
”NaN”. Then for all the comments we removed
punctuation, new lines, and stop words like “a”,
“and”, “the”, etc. Additionally, we also made all
the comments lower case.

3 Method

3.1 Model using Summary Comments

To begin with we only take into account the sum-
mary comments reviews provided by employees.
We have chosen to ignore the pros and cons re-
views provided by employees. This is because
initially we believe summary comments will help
provide the overall sentiment for the employees
experience at the company.

3.1.1 Word Embeddings

The first step we did was create word-level embed-
dings for the different words observed in the sum-
mary comments by employees. We created these
word-level embeddings by using 50D GloVe en-
codings that used 6 Billion token pre-trained em-
beddings. These word embeddings were then con-
catenated to form sentence level embeddings. We
had a maximum length for each sentence to en-
sure that the sentences embeddings had same di-
mensions. If the maximum length wasn’t met, the
sentence was padded with “pad” tokens. A po-
tential problem of using GloVe embeddings is that
some of the words appearing in reviews might not
be present in the GloVe embeddings. For exam-
ple, technical jargon specific to the companies and
colloquial or slang words. In order to address this
problem, we experimented with two approaches:
1) We ignored the word completely and moved
on to the next word. 2) An UNK token is used
whenever an unfamiliar word is encountered. The
UNK vector is set randomly with the same mean
and variance as the rest of the embedding space..

3.1.2 Logistic Regression

The logistic regression model makes use of the lo-
gistic or sigmoid function which is as follows:

1

h@) =

)

where theta are the feature weights and x is the in-
put example.In multi-class logistic regression, we
made use the One vs Rest (OVR) model. The OVR
model trains a logistic regression classifier hg) (z)
for each genre i” to predict the probability that
y = 1. For each new input ”x”, the genre ”i” that
maximizes hg) (z) is the predicted genre.

For the baseline model we simply imple-
mented the OVR model because it allows for ex-
perimentation and ease of understanding. How-
ever, a disadvantage of training a separate binary
logistic regression model for each genre is that it
assumes the probabilities for each class are inde-
pendent.

3.1.3 Convolutional Neural Network

For a baseline deep learning model we used a sim-
ple convolution neural network architecture. A
CNN is similar to a simple neural net, but replaces
most of the fully connected layers with convolu-
tion layers. The convolution layers parameters
consist of a set of learnable filters. Each filter is
small spatially, and as we slide the filter over the
width and height of the input volume, we will pro-
duce a 2-dimensional activation map that gives the
responses of that filter at every spatial position.

The CNN architecture we used is as follows:
An embedding layer. Followed by 2 ConvlD
layers with 64 filters, 5 kernel size, stride 1, no
padding and a ReLu activation function. Followed
by a MaxPooling1D layer with pooling size of 2.
Followed by a linear layer with 1000 units and a
ReLu activation function. And lastly, an output
softmax layer since it is a multiclass problem. Ad-
ditionally we used the categorical cross entropy
loss function and an Adam optimizer.

3.1.4 Recurrent Neural Network

RNNSs are designed to work better on sequential
data: when the information at one time step is
related to the information at some previous time
step. This makes them ideal for use on text data
and a problem like sentiment classification. This is
because text data is sequential, what comes next in
a sentence is often conditioned on what came be-
fore in the sentence. Hence, it is important to use a
model that exploits sequential information. RNN’s
allow the network to remember the input state that
appeared previously to make predictions about the
future. However, a problem of RNNs is that as the
sequence grows large, however, the gradients can
become infinitesimally small. Hence, in our model

we make use of LSTMs to tackle longer reviews.
LSTMs develops a memory cell and uses gates to
decide how much information needs to be forgot-
ten or need to flow through the time steps. In this
way, useful information can be kept and unneces-
sary information can be dropped. (9) The model
we use is as follows:

1) LSTM layer with 128 neurons, 0.2 dropout

2) LSTM layer with 128 neurons, 0.2 dropout

3) Dense layer with softmax activation

The visual representation of the model can be seen
in figure 2. Further on this model uses a cate-
gorical cross entropy loss function, an Adam opti-
mizer, and tries to optimize for accuracy.

Figure 2: RNN Architecture

Predicted Rating 5 stars

Dense Layer
LsTMZ

LsTM1 >

* i 1

Input Sentence ssssirey Frvesnc Compary

3.2 Model Using Summary Comments, Pros,
and Cons

One aspect we noticed was that summary com-
ments will not always be able to grab the views
and feelings of the employee. For example, if an
employee was very dissatisfied working at a par-
ticular company and rated the company a 1, their
comment for cons will be more detailed and pro-
vide more insight as to why. Hence, it will help
in predicting that the rating was a 1. Similarly in
the case of an employee being very satisfied with
a company, the pros might prove to be extremely
indicative of the rating. In order to test this hy-
pothesis we decide to experiment with using pros
and cons comments along with the summary com-
ments.

3.2.1 Concatenating All Comments Together

As a first step we concatenated all the 3 reviews
to be part of 1 review. We then calculated the
sentence level embeddings as described in section
3.1.1 and ran the RNN based model described in
section 3.1.4. In hindsight this was not the best
idea as concatenating all these 3 reviews would

lead to 1 very review with a very confusing sen-
timent. Hence, this would make it difficult for the
model to learn and perform well.

3.2.2 Training Individual Models

Initially we maintained 3 different sentence level
embeddings calculated as described in section
3.1.1. We then ran an individual RNN based
model as described in section 3.1.4 on each of the
different kind of reviews. We then used the out-
puts of the three different RNN LSTMs, and added
a fully connected dense layer. This had a softmax
activation function that produced predicted proba-
bilities for each of the possible rating buckets.

4 Results

4.1 Evaluation Metrics

In order to evaluate individual model performance,
we used the following metrics:

Correctly Classi fied Examples

Topl Accuracy = All Examples

2)

Correctly Classified Examples "

Top2 Accuracy = All Examples

Incorrectly Classified 1Degree Away

All Examples
3)

Example of to 2 accuracy is as follows: if the ac-
tual rating is a 4 but it is mistakenly classified as 3
or 5, then in the case of top 2 accuracy, it is con-
sidered accurate.

For the best model, we also plotted the loss
curves and the accuracy curves over epochs.

4.2 Baseline Model Results

Table 1: Summary of Results

Model Train Accuracy Val Accuracy
LR 0.36 0.34
CNN 0.46 0.46

From the initial results we can see that both
the Logistic Regression and CNN model failed to
perform well. Here we can see that the training
and validation results are pretty similar. We can
clearly see that the model is not over fitting the
training dataset well and is hence not able to build

a complex enough model that is able to learn well.
This is a case of a high bias model. However, the
CNN model did outperform the Logistic Regres-
sion model. This is probably due to it being a deep
learning model. This being said we had not tuned
any of the hyper parameters of the model and had
only ran the model for 5 epochs.

4.3 RNN Model Results

Training Top 1 Accuracy = TT1A
Validation Top 1 Accuracy = VT1A
Validation Top 2 Accuracy = VT2A

Table 2: Summary of Results

Model TTIA VTIA VT2A
Summary Only 0.62 0.58 0.77
All Reviews Concat 0.42 0.41 0.64
All Reviews Individual 0.78 0.62 0.88

Here we can see that the RNN model out-
performs the baseline models. This is expected
as we described above RNNs perform better on
text and sequential data. From the models we can
also see that concatenating all the reviews does
not lead to performance improvement. However,
building individual models for each type of review
and adding a softmax layer leads to a significant
improvement in performance. This helps satisfy
our earlier hypothesis that cons will help more in
the classification of bad reviews and pros will help
more in the classification of good reviews.

Beyond this, it is also interesting to note the
different in top 1 and top 2 accuracy performance.
In every case we can see that the model performs
significant better if we use the top 2 metric for
comparison. This makes sense because it is effec-
tively similar to narrowing the number of classes
from say 5 to 3. Also, on the other hand many
times it is extremely difficult to distinguish be-
tween a 4 star and a 5 star review or a 1 star and
2 star review. This is even true in the case of
humans. The rankings in terms of performance
for these different kind of models doesn’t change
when comparing using top 1 or top 2 accuracy.

4.4 Best Model Results

The best model is the one where 3 individual RNN
models are trained for summary comment, pros
comment, and cons comments, and then finally

combined with softmax layer. The model uses pre-
trained GloVe word embeddings, dropout of 0.2,
learning rate of 0.2 and an Adam optimizer. The
below graphs plot the accuracy and loss for this
model.

Figure 3: Loss vs Epochs

model loss

16 o= train
val

14

12

loss

10

08

06

Figure 4: Accuracy vs Epochs

model accuracy

08 = frain
val

07

06

accuracy

05

04

03

Given that this was the best model, we evalu-
ated the results on the test. We managed to achieve
a test top 1 accuracy of 0.63 and test top 2 accu-
racy of 0.86.

5 Qualitative Evaluation

In order to identify words that were strong clas-
sifiers of 5 star and 1 star reviews, we ran a count
script to explore which words appear most in these
reviews and our model is successfully able to clas-
sify. We observed that words such as “great”,
“best”, ’smart”, and “friendly” our model was suc-
cessfully able to catch and rate as either 4 or 5
stars. On the other hand words such as “poor”,
’stress”, “burnout”, “bad” were words that our
model was successfully able to catch and rate as
either 1 or 2 stars.

On the other hand, it was also extremely in-
teresting to see words that the model often failed

to catch. Words such as unique”, "different”, "ex-
citing”, and “new” were some top words associ-
ated with 4 or 5 star reviews that the model failed
to catch successfully many times. Words such as
”long”, ’boring”, and “free” were some top words
associated with 1 or 2 star reviews that the model
failed to catch successfully many times. Also there
were certain phrases that were ambiguous and led
to poor classifications, for example: work life bal-
ance, technical understanding, and company cul-
ture. This is due to humans not writing reviews in
full sentences and just leaving them as bullets in
both pros and cons sections.

Regardless of improvements, it’s clear that
the signal from 5 star reviews is strong and from
1 star reviews is strong however, like many multi-
class problems the signal becomes muddle in the
classes between the extremes. We discovered that
there is a high human error rate for this prob-
lem and dataset by predicting ratings ourselves.
Many employees leave reviews with sentiment
mismatching the ratings.

6 Conclusion

As we have seen above the best model uses 3 dif-
ferent RNN based models with GloVe word em-
beddings. However, even this best model has a lot
of scope to learn more and overfit the training data.
A deeper model or a different architecture can go a
long way in improving the model. Also we can see
that the model performs significantly better when
using top 2 accuracy as opposed to top 1 accuracy.
Our limitations working on this project was train-
ing time. It prevented us from further hyper-tuning
several of the parameters.

7 Next Steps

In terms of next steps we want to address three
main areas: data usage, word embeddings, and the
model itself.

Firstly we could take more steps to pre-
process the data. For example, there are several
comments such as typos, random characters, or
simply empty comments. It would helpful to re-
move these examples as they are not useful for the
model to train on.

Next as mentioned above, a problem with the
GloVe word embeddings might be that some of the
words appearing in reviews might not be present in
the GloVe embeddings. We would like to experi-
ment with using Bert and Elmo word embeddings.

Additionally we would also want to experiment
creating and training our own word embeddings
using the word2vecmodel and a neural network ar-
chitecture.

Our model does not seem to be performing
extremely well. It still doesn’t learn perfectly.
Hence, we will experiment with a deeper recur-
rent neural network, train it for longer number of
epochs, and hypertune the parameters. This is es-
pecially true in the case where we are training indi-
vidual rnns for each type of comment. The model
took very long to run so we did not have as many
resources to hypertune the parameters. Our RNN
architecture is one we built on our own, it might be
worth exploring the state of art RNN architecture
on a sentiment analysis task such as the Stanford
Sentiment Twitter dataset. Lastly, since we are us-
ing multiple RNNs it might be useful to explore
using attention networks. Attention networks are
currently state of the art in this field and could help
improve our results significantly.

Acknowledgments

We would like to thank Professor Kian Katan-
foroosh and Professor Andrew Ng for all of their
help and guidance with the project. We would also
like to thank Weini Yu for all her mentorship and
great suggestions along the way.

Contributions

Aaron and Dhruv contributed equally to the
project. We built the models together in person.
Dhruv focused more on writing of the paper and
Aaron focused more on creating the poster.

References

[1] Amit Schechter, Camille Pataki, Dhruv Kedia,
CS231N Final Paper.

[2] Dhruv Kedia, Swathi Iyer, Vidushi Singhi, CS229
Final Paper.

[3] Dongxu Zhang, Dong Wang. Relation Classifi-
cation via Recurrent Neural Network. (2015)
http://arxiv.org/abs/1508.01006

[4] Dos Santos, Cicero & Gatti de Bayser, Maira.
(2014). Deep Convolutional Neural Networks for
Sentiment Analysis of Short Texts.

[5]1 Google, Amazon and Em-
ployee Reviews, Kaggle.
https:/fwww.kaggle.com/petersunga/google-
amazon-facebook-employee-reviews

more

[6] Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global Vectors
for Word Representation.

[7] . Journal of Machine Learning Research, Vol 12, pgs
2825 - 2830, 2011.

[8] Karpathy, Andrej. "Convolutional layer” CS231N
Lecture Notes.

[9] Ng, Andrew. "Recurrent Neural Networks” CS230
Lecture Notes.

