CS230

Transfer Learning for Multi-label Street Fashion
Images

Yiying Hu
Stanford University
yhul102@stanford.edu

Abstract

We trained a deep neural network to predict the clothing attributes of fashion
images using transferred learning on top of pre-trained VGG-16. The motivation
of training this model is to create “search engine” for fashion images, the possible
use case will be for fashion journal editors to find the similar outlook from their
own database of images and illustrate for blog readers. The challenge in training
the model is that the outputs of the training model (i.e. clothing attributes) are
high dimensional in the format of [0, O, ..., 1] for each image to indicate binary
clothing attributes, and most of the elements in the vector are 0, which causes
the label to be imbalanced. We tested the impact of changing number of clothing
attribute as outputs, and putting high weights on important features such as gender,
and adjusting the weights of the cross-entropy loss function when training the
deep neural network. After these tests to obtain the best hyper-parameters, we
compared our model with the original untrained VGG-16. The approach we used
to make comparison could also work as a recommendation system - we put a new
test image as well as every image in the existing database into our model and
VGG-16 untrained, and extracted their results from a common intermediate layer
of both models. For each model, we used cosine similarity to find pictures from our
database whose extracted intermediate layers are closest to the test image. These
most similar pictures from the image dataset are ‘recommended’ similar looks by
the models. By manually looking at these images found by both models, we can
evaluate models’ performance.

1 Introduction

Streets fashion photos are becoming more and more popular on the social network nowadays.
However, with the humongous amount of pictures online, many of them are missing description.
By leveraging the deep neural network, we could label the image to see whether they meets certain
attributes, such as color is black or not, or pattern is dot or not. We used transfer learning with the
foundation architecture of VGG-16 whose first 12 layers are not trainable, and added a flattened layer
on top of that so that the output vector’s length is equal to the number of clothing attributes labels. To
feed the model, every sample input is a color images of street fashion (224x224x3), and output is a
vector of length (20,). Then we evaluated the performance of the model by extracting its VGG 17th
layer which is fine-tuned, and find the image from the existing image database whose cosine similarity
of the 17th layer is closest to the new test image’s 17th layer, which guarantees the architectures of
two models are the same so that it’s an apple-to-apple comparison. By manually viewing the the
images whose 17th layers are most similar to that of the new test image, we can determine how good
the model is at performing the multi-label classification by eyeballing the similarity.

CS230: Deep Learning, Spring 2019, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

The commercial value from making the fashion photos able to ‘talk’ about their attributes is tremen-
dous. Many online users arises interests in shopping for clothes when they see fashion bloggers’
pretty street snapshots and get aware of the current season’s trend. If we are able to label the street
snapshots of their color pattern quickly, then the advertiser can quickly and automatically search for
ones with the similar labels and display links for recommendation, thus improving the ads conversion
rate.

2 Related work

There are many papers described the advantage of deep neural network in image classification[1].
Therefore, we think a pre-trained VGG-16 is a good foundation for transfer learning for image
classification issue. There has been really advanced and accurate ML models for measuring similarity
between items in images, such as deep ranking model [5]. But this kind of similarity might not
necessary for fashion recommendation because we are looking for not images that most look like
each other, and rather images with similar trendy elements is good enough. For fashion image related
works, there is a dataset Fashion-MNIST which is predicting multi-class single output with input
images of black/white; this study image might not be applicable to the real-world complicated images
[2]. DeepFashion[3] does a great job at detecting clothing attributes and landmarks on online shopping
clothing pictures - those with white and plain background. As for fashion recommendation, there
is FashionNet that achieves personalized outfits recommendation by fine-tuning VGGNet stacked
with FC[4]. But different from all these excellent works with high performance at labelling clothing
attributes and recommendation, we want to study predicting on more noisy pictures where the fashion
model stands in a more diverse background, and solve a multi-label classification problem.

3 Dataset and Features

Originally there are 1856 pictures [6], and each image is processed with:

1. Data augmentation for 10 times, using rotation, width and height shifts, etc. Some images
only have 9 data augmentation copies because of generating conflict names, so final amount
of processed images is 20412)

2. Resized to the resolution of 224x224x3
3. Normalized by dividing 225 and between 0 and 1

The training and testing split is 67 percent and 33 percent. Therefore, the shape for training is a tensor
of (13676, 224, 224, 3) and test is (6736, 224, 224, 3). Sample input is figure 1 on page 3. For model
output, is a 11-d or 20-d vectors, because we build two models - one with 20 labels and the other
with 11 in order to see how the dimension of prediction output vector impact the model performance.
The corresponding description are:

e 20 labels: Black, Blue, Brown, Collar, Cyan, Gender, Gray, Green, Pattern-floral, Pattern-
graphics, Pattern-plaid, Pattern-solid, Pattern-spot, Pattern-stripe, Purple, Red, Scarf, Skin-
exposure, White, Yellow

e 11 labels: Black, Blue, Brown, Cyan, Gender, Gray, Green, Purple, Red, White, Yellow

4 Methods

4.1 Loss Function

While training the neural network, the challenge is since this is a multi-label classification, and the
actual data have most of labels to be 0 (84 percent Os 16 percent 1s). Therefore, the model tends
to predict everything as O to obtain a high performance (similar to the spam email problem). The
prevent the labels to be all zeros, we modified the loss function by editing the weights and higher the
weights on positive prediction result so the loss function becomes minimize.

Therefore, instead of using original binary cross-entropy, we put a weight K>1 on positive labels.
DK ey xlog(yy) + (1 — i) * log(1 — yp)] ¢))

Figure 1: Left hand side is image from original dataset; right hand side is after data augmentation and
resize to 224x224x3 (not normalized yet)

Here y,, is predicted output and y; is actual output

4.2 Transfer Learning Architecture

Input
Original VGG-116 flattened dense cutpsl
(m, 7.7,512) - I ~
(m, 25088) (m, 20)

(m, 224, 224, 3)

Figure 2: Transfer Learning Architecture

As you can see in the figure 2 on page 3, the network is stacking two layers on top of VGG-16 in
order to obtain a n x 1 output (n is number of predicted attributes as needed), and the first 12 layers
are fixed and the rest layers are allow to be fine-tuned.

4.3 Accuracy Metrics

When evaluating the performance, instead of using accuracy, we also calculated the F1 score so that
the predictors needs to do well on both precision and recall. Under this accuracy measure, when the
model blindly predicts everything as 0, the precision will be too low and the score won’t be high,
which could accurately reflect the biased prediction issue if the model does that.

4.4 Compare the Model Result with Original VGG-16

Search every image from the original training database (1856 pictures), and calculated their output
from the 17th layer ‘block5_conv3 (Conv2D)’ (after flatten it changes from 14x14x512 to 100352x1)
from each model and compared to that from the new test image’s output using cosine similarity to
find nearest 5 images from the database.

5 Results and Discussion

5.1 Result

We set batch to be 32 and epoch to be 5 because papers to deal with similar issue [4] uses epoch = 32
and we found after 5 epoch the loss function and accuracy become pretty stable, so there is no need
to waste resource on further training.

The K from loss function equation (as explained above) and learning rate need to be fine-tuned.
Other than that, we also found that some attributes of the output are more essential than others by
intuition, and thus we tested the model result by putting more weights on them. We also tested the
performance of model with 11 versus 20 outputs. All of these combinations are trained and evaluated
using accuracy metrics (mainly look at F1 - score and test loss and test accuracy) and chose the
hyperparameters whose metrics result is the best. See Figure 3 on page 4 for the experiment results.

Experiment Group No. |y dimension [k (loss func weight for pos) |learning rate F1 (train+test) |Train_Loss |Test_Loss |Test_Accuracy
gl 11 2 1.00E-07 0.44 6.08 6.38 0.61
g2 11 5 1.00E-07 0.46 9.97 10.43 0.62
g3 11 10 1.00E-07 0.40 14.28 14.90 0.63
g4 20 1.5 1.00E-07 0.49 5.23 5.48 0.54
g5 20 2 1.00E-08 0.25 16.90 17.72 0.02
g6 20 2 1.00E-07 0.51 6.09 6.39 0.59
g7 20 2 1.00E-06 0.53 9.52 14.16 0.02
g8 20 3 1.00E-07 0.52 7.79 7.92 0.67
g9 20 4 1.00E-07 0.51 8.96 9.27 0.60
gl0 20 5 1.00E-08 0.34 22.46 23.69 0.15
gll 20 5 1.00E-07 0.50 16.49 22.95 0.07
gl2 20 5 1.00E-06 0.51 15.52 24.16 0.01
gl3 20 10 1.00E-07 0.44 14.15 15.03 0.34
gl4 20 10 1.00E-07 0.43 23.26 33.65 0.07

Figure 3: Experiment Result from Tuning Hyperparameters and Change Output Dimension

F1 score for 20 labels = 0.51 and 11 labels = 0.44
—— loss_val_20_labels 65
—— loss_val_11_labels i

——— accuracy_val_20_labels
—— accuracy_val_11_labels

Epoch # Epoch #

Figure 4: Dimension Change Model Performance; F1 score for 20 labels = 0.51 and 11 labels = 0.44

5.2 Discussion

Since the selection of the best model is pretty subjective because the F1 difference is not big, so does
train and losses, we also tried g8 and g9. It turns out that the recommended images are the same 5
pictures, which means the difference of a parameter in the range of 2 to 4 for K is not significant.

Pictures recommended by our model is in Figure 7 on page 5 and recommended by VGG original is
in Figure 8 on page 6. It is obviously that our model performs better than the VGG original in that 1.
our prediction never labels gender wrong 2. it is better at extract an important fashion attribute of the
input picture which is the red color. Therefore, it proves that trained VGG with a few front layers
fixed is doing a better job than untrained.

The model result indicates that it is not overfit because Figure 5 on page 5 shows the loss function is
always decreasing in both train and test data.

We selected g6 to be have the best performance and applied that model to extract the top 5 similar
images from the database. The result is shown in Figure 4 on page 4.By comparing the group 1 and
group 6, we can also conclude that higher dimension of classification output doesn’t necessarily
means worse performance. Figure 4 on page 4 shows for 20-label model, the accuracy, loss as well as

Train and Val Loss Function

~—— loss_train_20_labels
— loss_val_20_labels

00 05 10 15 20 25 30 35 40
Epoch #

Figure 5: View Training and Testing Data Loss Functions

F1 score (which is calculated using the whole dataset to predict - including training and testing) is
higher than that of 11-label. However, the intuition is that with more dimension, the output labels
tend to have correlation with each other, which provides the training model more noise. It might
worth testing the performance of reducing the output label dimension by PCA to see whether the
model prediction result will change.

Figure 6: a new test image

6 Conclusion/Future Work

This study preliminary analyzes the power of transfer learning to performance multi-label classifi-
cation and puts effort to evaluate the model result by F1 score, cost function and accuracy, as well
as extracting the recommended images to subjectively evaluating the result. The result complies
with the intuition that fine-tuned model works better than original VGG. In the future, it might be
worthwhile to explore a more sophisticated method to perform multi-label classification by loss
function variation, input data processing especially the output labels fed into the model, and etc, to
prioritize the most important output attributes.

Figure 7: The recommended pictures from my model

Figure 8: The recommended pictures from original VGG-16 model

7 Contributions

This project is done by only one person, Yiying Hu, from data processing, training infrastructure to
evaluating the result. Thank Jay Whang for his helpful feedback during office hours.

Our code is on GitHub at [https://github.com/huyiying/Fashion-DL]

References

Code or libraries: scikit-learn for F1 score, Tensorflow and Keras for building deep neural network
and downloading VGG-16

[1] Karen Simonyan: “Very Deep Convolutional Networks for Large-Scale Image Recognition”, 2014;
arXiv:1409.1556.

[2] Han Xiao, Kashif Rasul: “Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
Algorithms”, 2017; arXiv:1708.07747.

[3]Z. Liu, P. Luo, S. Qiu, X. Wang, and X. Tang: “DeepFashion: Powering Robust Clothes Recognition and
Retrieval with Rich Annotations”, 2016.

[4] Tong He: ‘“FashionNet: Personalized Outfit Recommendation with Deep Neural Network”, 2018;
arXiv:1810.02443.

[5] Jiang Wang, Yang song, Thomas Leung, Chuck Rosenberg, Jinbin Wang, James Philbin, Bo Chen: “Learning
Fine-grained Image Similarity with Deep Ranking”, 2014; arXiv:1404.4661.

[6] Huizhong Chen, Andrew Gallagher, and Bernd Girod, "Describing Clothing by Semantic Attributes",
European Conference on Computer Vision (ECCV), October 2012.

