Deep learning for portfolio management

Long Shen™
longshen@stanford.edu

Abstract

Everyone is eager to make money from stock market. But the trend of stock price is
full of randomness and noise. Who want to predict it will finally get a low accuracy
results when they apply their work in the real world. In this paper, I will use LSTM
to predict portfolio directly. With this end to end design, we can lower risk by a
more diverse investing and make better use of correlation among stocks.

1 Introduction

Our model is to predict the portfolio we should buy. For convenience, we assume there is no slippage
and taxes. We will sell all stocks every night and buy the stocks every morning depends on the
prediction.

The main input to our algorithm is the stock data, including date,volume,open,close,high,low,adjclose).
Also it has fixed input to get contextual information. We use 1DConv to process input. Because when
the input dimension is large, the 1DConv can reduce the dimension and let us train model fast. Then
we stacked LSTM and some denses to process output. We have two outputs, one is used to predict
price(linear regression) and another is used to predict portfolio(softamx). The two output share the
same Istm and some denses. We want to the portfolio prediction task can learn some information
form price prediction task. Also, we add extra fixed input and combined it with the LSTM output.
Because we want to the model can learn some contextual features.

2 Related work

LSTM is a state of art model to handle the problem of time series. There are a lot of work using
various kinds of LSTM[1] to predict stock price. For example, Li, Hao, Yanyan Shen, and Yanmin
Zhu they used multiple input[2]. Bao, Wei, Jun Yue, and Yulei Rao used stacked LSTM. Also, there
are a lot of variations of LSTM we can apply them on stock prediction. For example, DARNN[4], It
introduces a novel input attention mechanism that can adaptively select the relevant driving series. In
the decoder, a temporal attention mechanism is used to automatically select relevant encoder hidden
states across all time steps. Graphical RNN[S5] It used the same RNN for time series in the same class.
Also, it encoded all hidden status of nodes in the same graph and concatenate the output of every
graph then feed them as input.

However, I find these papers focus on price prediction. But what do we really care in real world
is the total earring by investing. Depends on intuition sense, we can know although we have a low
accuracy(53-57percentage) for the going up or down of an individual stock, we can still have a
positive earning because a proper portfolio can offset these randomness. Especially when the market
is going up. If our portfolio’s earnings can exceed the SP index, it would be useful.

*Use footnote for providing further information about author (webpage, alternative address)—not for
acknowledging funding agencies.

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

Also, I find some previous teams are working on long term prediction. But it’s meaningless to predict
the stock price for a long term. Because major is fed by short term dataset, all information will vanish
after a certain time. Moreover, it’s unnecessary to do a long term prediction, because we can take
action right now. The earning is same if the price increase 1 dollar tomorrow or in the next year.

3 Dataset and Features

For convenience, we select 4 stocks as the original data from SP 500, they are FB, GOOGL, MSFT
and AMZN.[6] We have 1085 training examples and 510 testing examples which date range is from
2012-05-18 to 2018-11-02. Every example has 32 timestep(window size) and 3 inputs. The main
input is the volume,open,close,high,low,adjclose of 4 stocks. The discrete input is the date, which
don’t need to predict. Also we have an fixed input to handle contextual features(e.g. earning report).
I normalization the main input data and scale the discrete and fixed input under 1. The stock data of
amazon.

1[750]: AMIN.head()

1t[750]:
date volume open close high low adiclose

0 1997-06-16 72156000 2437500 1958333 2.500000 1.927083 1958333
1 1997-05-16 14700000 1968750 1729167 1.979167 1708333 1.729167
2 1997-05-19 6106800 1760417 1708333 1770833 1.625000 1708333
3 1997-06-20 5467200 1729167 1835417 1750000 1635417 1635417

4 1097-05-21 18853200 1636417 1427083 1645833 1.375000 1427083

Main input after combination and normalization

) data.dead)

9
vohme - open cose hgh v adcese whme o cese hh. e B v adlow

() 05500 6410 00K AGGTD MG DKM DN AT L1000 AOORH . 0615 LI 10 1205 ¢
1 0S50 D600 -DGKKNS Q0GR DGHMSH 6HK09 4IGR 116G 120N -LIGHS . 1360 L3 AR M
2 Q20010 O 0600 QBB 0508 000 08500 2059 12588 2200 . A30BH L3R L309M L3Rk
3 Q00T OBK0D OG0B0 OB OBMET 11805 289 24021 2470 . 3B S3E 13008 130

414606 610 Q0TS A0 6HA AT QM 240 AZHG 2801 . 0D -LLNRN 131 Y

Discrete input is year, quarters, months, weeks, dayofweek, dayofmonth, dayofyear, total days since
1970. Which have been scaled.

n (152):

discrete_input = pd.concat (datetine_colum,dt.year - 1970)/50, datetine colum.dt.quarter/d, datetine_colum.dt.mor

discrete_input.head|)

e ddte dte e Gl Gt Gt Gae

0 084 05 QBT 03TTHH 0TI 0560645 OITOTB1 00000
1084 05 041667 036625 D00 DETAIS 037978 0OO
2 08 05 OB 03626 01857 Q70967 00710 00004
3084 05 016567 030626 0265714 0715 030043 00005

4 080 05 QBT 03025 08571 0TI 065 00006

4 Methods

For baseline model, we used the following structure to predict the price. Then, only buy the one
which has the largest daily return.

an mput. Tone,
timestep36,

LTI 128

LSTHR)

Baselne model

‘ Dense(512) ‘

I

For two task model, we used the following structure. We will have two outputs. The key part of our
is to define the target of portfolio prediction task. For this task, it’s hard to define a true label. The
simplest way is to select the one who have a highest increasing ratio as the true label. But we don’t
want to hard encoded it. For example, if stock A increase 20%, stock B increase 19% and stock C
decrease 20%. If we hard encode it we will treat stock B and C same. So we can’t learn enough
information. The first method is to softmax these daily return(excluding decreasing ones) and set
these as true labels and the loss is categorical cross entropy. The second method is to use daily return
directly. We find the second ones have a better performance.

an pe. (NOre,
timestep 36,

okl |y ‘

Dense(512)

‘ Dersel)

B
QulpulPie stcks: ‘ ‘Ouwm(mmus
4

including benchmark ield)

For two task model with 1DConv, we concatenate discrete input and main input, then feed them
into 1Dconv. Also we will concatenate the contextual input with the output of LSTM and use this
concatenate layer as the input of the next dense layer.

in mput {Rore, iscrete put:
=
ealures §
10Conv(128,3)
LSTM128)

‘ Dense(512)

Totask 1ConvD
Mode!

——

‘ Contextual iput:
(leatures: 48)

OutpuPrice stocks: | | Output portolo: 5 ‘
4 including benchmark eld)

5 Experiments/Results/Discussion

The epoches is 500. The timestep for every example is 32. benchmark yield is 1. Batch size is
64. The optimizer is Adam and learning rate 0.001. The filter size of 1dconv is 3. Also, I use drop
out when training, the ratio is 0.2 because I'm afraid the information of input is not enough. All
these hyperparameters can be adjusted to have a better result. But for me, they are good enough The
metrics I used to measure model is the annually return and sharpe ratio. The Sharpe ratio is used to
help investors understand the return of an investment compared to its risk.

The Formula for Sharpe Ratio Is
R, — Ry

9p

Sharpe Ratio =

where:
R, = return of portfolio
Ry = risk-free rate

g, = standard deviation of the portfolio’s excess return

Metrics
B Anually return

@ sharpe ratio
Baseline model

Two task model
with soft
encoded label

Two task model

Two task model
with 1DConv

6 Conclusion/Future Work

The model can perform very well. The yearly return can achieve 1.83 and sharpe ratio can achieve
1.70, which is much better than baseline model. But we still can do better. First, it’s an ideal
environment(without slippage and taxes). To apply this model in the future, the next step is to add
these restrictions, so we can simulate the real world. Second, we can introduce graphic algorithm to
capture relationships among stocks better. So we can speed up our algorithm when input hundreds of
stocks. Third, because of the instability of stocks, more recent example are more important. Swe can
also introduce weight decay for these examples. Forth, we can have a longer time step for examples,

so the model can capture more information from historical data. Fifth, we can introduce other external
data other than stock data.

References

[1] Hochreiter, Sepp, and Jiirgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997):
1735-1780.

[2] Li, Hao, Yanyan Shen, and Yanmin Zhu. "Stock Price Prediction Using Attention-based Multi-Input LSTM."
Asian Conference on Machine Learning. 2018.

[3] Bao, Wei, Jun Yue, and Yulei Rao. "A deep learning framework for financial time series using stacked
autoencoders and long-short term memory." PloS one 12.7 (2017): e0180944.

[4] Qin, Yao, et al. "A dual-stage attention-based recurrent neural network for time series prediction." arXiv
preprint arXiv:1704.02971 (2017).

[5] Ashish Bora, Sugato Basu, Joydeep Ghosh. “Graphical RNN Models” Neural and Evolutionary Computing
(2016).

