Predicting Delays in Flight Departure Time at SFO

Yanqiu Wang Yutong Sun
Stanford University Stanford University
yangiu@stanford.edu ycsun@stanford.edu
Abstract

As flying becomes a widely-adopted way of transportation, flight delays also
begin to rise as one of the prominent problems for travellers. In this study, we
explored applying deep learning to predict flight departure time delays at San
Francisco International Airport with information such as departure time and weather
conditions. Three models were implemented — a simple neural network, an LSTM,
and a CNN. All models reached reasonable accuracy and F-scores, among which
LSTM performed the best across all metrics. Most importantly, we found that
a CNN - an architecture rarely valued for solving this problem — that takes in
previous flight information performs just as well as a LSTM network, which is
usually applied to predict flight delays.

1 Introduction

In the United States, more than 44,000 flights are serviced for 2.7 million passengers every single
day [1]. San Francisco International Airport (SFO) carries more than 55.8 million passengers per
year, a number that has continued to increase since 2011 [2]. With this growing number of flights
and airplane travellers, flight delays have also become a common problem. U.S. Department of
Transportation admits that it is "difficult for an airline to estimate how long a delay will be" ahead of
time [3]. With the rapid development of deep learning recently, we were interested in seeing how
different deep learning architectures could potentially help solve the problem of predicting flight
delays. For both the simple NN model, we input 12 features relating to each flight such as time of
the day and weather conditions, and outputs a delay class predicted by the model. For the LSTM
and CNN, there are 13 input features for each flight (with the addition of delay class of previous
flight/flights) and one output of the delay class predicted for the current flight of interest. For detailed
description on input features and output classes, please refer to Section 3.

2 Related work

Most of the existing research done surrounding prediction of flight delays have focused on solving the
binary classification problem of whether or not a flight will be delayed [4, 5, 6] where information on
the current and previous flights is used to generate a prediction on whether the flight will be delayed
for more than 15 minutes. Some have explored using the binary classes of "high delay" versus "low
delay" [7] based on flight and weather information. Recognizing how a delayed prior flight influences
the delay status of the next flight, many researchers have focused on using an LSTM in predicting
delays in an effort to capture the time-series nature of the data [4], whereas others have explored
using an artificial neural network [5, 7] or a random forest algorithm [8, 9]. While most algorithms
were able to reach a high accuracy, they were unable to predict a value for the amount of delay. Our
work aims to add onto the existing research by taking into account a comprehensive feature list that
includes both flight information and weather data, and outputs a multi-class classification indicating

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

the approximate amount of time that a flight departure might be delayed. Additionally, we propose
using a CNN architecture that is able to capture the time-dependency of the flight departure delays.

3 Dataset and Features

Our first dataset is the on-time performance of flights in the United States by the Bureau of Trans-
portation Statistics [11], containing information such as flight date, flight number, departure airport,
departure delay time, and much more for flights within the United States from 1987 until today. The
second dataset is the hourly weather dataset for several major cities around the world between Janu-
rary 2012 and October 2017 [12]. It includes weather information such as humidity, pressure, weather
condition, wind speed, etc. After merging the two datasets with R, we extracted the corresponding
entries for the months of January, March, May, July, August, October, and December of 2016 as
representative data points. We split the 100k examples randomly into train, dev, and test sets by an
approximate 90/5/5 ratio (see Figure 4 for exact numbers).

3.1 Data Preprocessing

We synthesized our data using R, where each entry corresponds to a single flight with all relevant
information. To do so, we matched every flight with the hourly weather data of its scheduled take-off
time. For example, a flight that was scheduled to take off at 6:35 am on January 2nd is matched
with weather features of San Francisco labeled “1/2/2017 6:00 - 7:00” in the first dataset. With this
processing, each set contains 13 variables: 6 weather features (humidity, temperature, wind speed,
wind direction, weather description, and pressure) and 6 flight features (distance of flight, scheduled
departure time, destination, day of month, day of week, flight number), and a final “Delay_Group”,
which classifies each flight into one of the 15 delay intervals (every 15 minutes from <15 minutes to
>180 minutes). For the simple NN, each training example represents one flight entry with 12 features
(all corresponding variables except for delay group). For the LSTM model, each flight’s input is the
13 features of its previous flight, including delay group. For the CNN model, each training example
is represented by all 13 variables of the 5 previous flights. All three models use the delay group of
the current flight as the ground truth label.

4 Methods

4.1 Simple Neural Network

We first built a simple neural network as a baseline for our problem. The inputs are 12-feature vectors
for each flight. We used two hidden layers and a final output layer with softmax activation to make
predictions about one of the fifteen delay classes. Here is the detailed architecture:

Layer Parameters Activation
Hidden Layer 1 W=(25,12) b=(25,1) ReLU
Hidden Layer 2 W=(12,25)b=(12,1) ReLU

Output Layer W=(25,12)b=(25,1) Softmax

Figure 1: Architecture of Simple Neural Network

4.2 LSTM Model

We then implemented an LSTM model in order to capture the time-dependency of the flight delays.
Inputs are 12-feature vectors for each flight and outputs a prediction about one of the fifteen delay
classes (same as the simple NN). In training, we used a combination of LSTM cells, Dropout,
BatchNorm and Dense layers in our model. Using this architecture, at each point of data processing,
we are also utilizing the predictions of delay group made for the previous flight as an additional input,
which is then able to capture the time-dependency nature. Here is the detail of the architecture:

Figure 2:

4.3 CNN Model

We explored with various ways to implement a CNN to solve this problem. We initially considered
implementing a 1-D CNN, but then decided to try and capture the time-dependency by using a 2-D
CNN structure and reformatting our inputs. For this model, each flight is represented by the features
of the five preceding flights. The output variable is the delay class of the current flight of interest.

The following figure aims to clarify this structure:

Architecture of the LSTM Model

BatchNorm

)
ks
@)
>
=
<]
a

Figure 3: Data Manipulation for CNN Model

In training, we used a combination of convolutional, pooling, and fully connected layers, with a final
output layer using a softmax activation to output a classification for the delay group. For each of the
Conv layers, we use a filter size of (5, 5) so that it is a horizontally-sliding window. We believe this
architecture helps capture the time dependency of delay since it takes in information from the past

five flights in predicting the current flight delay group.

Layer f s n P Activation

CONV 5 1 4 same ReLU
MaxPool 5 1 / same i

CONV 3 1 8 same ReLU
MaxPool 5 1 / same /

CONV 5 2 16 same ReLU

CONV 5 3 32 same ReLU

CONV 5 4 64 same ReLU

FC / / 15 i Softmax

Figure 3: Architecture of the CNN Model

4.4 Loss Function

All three models used the same loss function: the softmax cross-entropy loss. Because this is a
multi-class classification problem, we decided to use this standard loss function that usually used to

optimize for such problems.

L=->", v *log(p;), where

e

a
i

bi= s e

DAY DAY |CARRIER DEST | CRS Wind| Wind DEP
MONTH| OF OF FL STATE | DEP DISTANCE | Temperature o o Direction Humidity| Pressure | DELAY
MONTH | WEEK | NUM FIPS | TIME GROUP

. Input Feature

1 1 5 408 51 754 2419 275917434 3 11 75 1026 0

1 1 5 1798| 41| 758 550 275.917434, 3 11 75 1026 -1

1 1 5 5268 30 759 807/ 275917434 3 11 75 1026 0

1 1 5 5392 6 800 363| 275.917434 3 11 75 1026 4

1 1 5 174 34 800 2565 275.91743 3 11 75 1026 2

1 1 5 1930 6 800 337 275.917434 3 11 75 1026, 1

Ground Trut

5 Results & Discussion

5.1 Evaluation Metric

We used three metrics to evaluate our models and results: Multi-class Accuracy (15 classes), Binary
Accuracy (delayed > 15 minutes or not), and Binary F1 Score. The formula of these metrics are
shown below (Note: for binary metrics, "positive" is defined as "the flight is not delayed (i.e. delay
time < 15min as deemed by Federal Aviation Administration [13])", and vice versa):

Number of Correct Prediction of Class
Total Number of Examples
True Positive + True Negative
Total Number of Examples
True Positive

True Positive + False Positive
True Positive

True Positive + False Negative

é __ 2XPrecision X Recall
Blnary FI Score = Precision+Recall

Multi-class Accuracy =

Binary Accuracy =

Binary Precision =
Binary Recall =

The Multi-class Accuracy shows the percentage of correct classification of flights into the 15 delay
categories, a direct measurement of the performance on our multi-class classification task. The binary
metrics capture the concern of travellers: "will my flight be delayed or not?" This reasoning behind
setting "not delayed" as positive is to optimize in our fine tune process in the direction of maximizing
the probability of a not delayed flight labeled as not delayed. We believe labelling a not-delayed flight
as delayed is more harmful (traveller may get to the airport later thinking it’s going to be delayed)
than labelling a delayed-flight as not delayed.

5.2 Hyperparameter Tuning

One hyperparameter we focused on was the number of layers to include in each model. For all three
models, we explored using more number of layers than what we eventually decided on. For example,
we experimented with using more Dense layers in the LSTM model but found that it did not increase
the accuracy but instead took longer to train, and thus settled on a model with only one dense layer
before the final activation. Similarly, we tried utilizing more CONV and POOL layers than our final
model for the CNN, but found no improvement on accuracy.

Additionally for the CNN model, although we designed the filter sizes to be 5x5, we experimented
with different stride sizes to find a balance. We initially set all stride sizes to 1 as we were wary of a
larger stride size losing important information in our data. However, after increasing stride sizes
in the later CONV layers, we found that little accuracy was sacrificed for a much faster training
time. Therefore, we decided to increase the stride sizes in later parts of the model. For the number of
filters at each layer, we were inspired by the VGG-16 model [10] where the number of channels is
continually doubled by using more filters at each CONV layer.

To prevent over-fitting the training set, we kept track of the training cost and test cost for every 10
epochs. When training each model for the first time, we set the epoch (iteration) size to be 200 and
looked for the instance where test-set cost starts to rise. For the simple-neural network, the threshold
was 50 epochs, so we used this critical value as our new epoch size and re-trained the NN model to
obtained the results. For both the CNN and LSTM models, the losses converged at the 60th epochs.
Since no over-fitting was observed before these two thresholds, we chose them to be the epoch sizes
and trained the models again for analysis.

We also experimented with other hyperparameters such as mini-batch size, learning rate and number of
neurons in different layers of the models. The current version of our models give the highest accuracy
without taking up unreasonable amount of computational power with our tuned hyperparameters.

5.3 Results

Accuracy Accuracy F1
Model Set (Delay Class) (Binary) (Binary)
Train
p— v 45.11% 84.94% 91.80%
NN Test 36.63% 78.00% 87.50%
m = 6129
Train
st 64.09% 89.99% 94.93%
LSTM
Test 56.70% 83.23% 90.50%
m = 6127
Train 52.71% 89.83% 94.70%
m = 88610
CNN
Test 43.75% 81.64% 90.49%
m = 6123

Figure 4: Evaluation Metrics of Simple NN, LSTM, and CNN Models

Overall, the LSTM performed the best in all three of our evaluation metrics, and, as expected, the
simple NN performed the worst in all three. Zooming in on the performance of both the LSTM and
CNN models, however, there are interesting results. Both models perform exceptionally well on the
binary task — both achieving an accuracy above 80% and F1 above 90% on the test set. Although
LSTM does perform slightly better, the difference is almost negligible.

LSTM model loss CNN model loss

221 — train 22 — ftrain
21 test test
20

19

loss

17

el e

0 10 20 k) 0 50 60 0 10 20 k] 0 50 60
epoch iterations (epochs)

2l

Figure 5: Loss of the LSTM model (left) and the CNN (model) during training

Looking at the multi-class classification task, LSTM performs significantly better than the CNN.
Through the loss diagram during training, we found that the LSTM hits a plateau leading up to 18
epochs (test loss ~ 1.82), but after running for longer, it is able to break this plateau and eventually
reach a much lower test cost of around 1.52. On the other hand, the CNN model seems to quickly
hit a plateau (test loss ~ 1.81) and cannot break out of it (even after we ran it for 1000 epochs with
more added layers). Further, when we early-stop the LSTM model at the first plateau, we find its
performance accuracy to be extremely similar to that of our CNN model. Thus, we hypothesize that
our CNN model is not robust enough to break out of the plateau which our LSTM model can, thus
resulting in the difference in performance.

6 Conclusion/Future Work

Our result shows that the LSTM model outperforms the other two with a multi-class accuracy of
56.70%, a binary accuracy of 83.23%, and a F1 score of 90.53% (on the test set). The CNN model
performed almost as well as the LSTM on the binary classification task with an accuracy of 81.64%
and F1 Score of 90.49%. We believe both the CNN and LSTM models are able to tackle the binary
task sufficiently well by capturing the time dependency, but the LSTM model performs significantly
better on the harder task of multi-class classification. It is important to note that all three algorithms,
including the simple NN, were able to predict the delay class at reasonable accuracy.

For future work, it would be interesting to explore whether with more computational power and a
much deeper model, a CNN architecture would be able to break the plateau and eventually converge to
a loss that is similar to the current LSTM model in the multi-class classification, although practically
such a model may not be best-fitted for real-world application due to its large size. Furthermore, a
deeper LSTM model could be trained for longer with more computational power to see whether it
may break the current plateau that it converges to and reach an even higher multi-class accuracy.

7 Contributions

The authors worked together through every step of this project. During the implementation phase,
both authors contributed to designing, implementing, and tuning the model architectures. After
obtaining the results, the authors collaborated on analyzing, visualizing, and summarizing the results.

We would like to thank Weini Yu for her continued support throughout the quarter and Ashwin
Sreenivas for his helpful guidance during office hours at the very early stages of this project.

Our code is on GitHub at: https://github.com/cocosun1/CS230-Project

References

[1] FlySFO | San Francisco International Airport. (2019). SFO Served an All-Time Record 55.8 Million Passen-
gers in 2017 | San Francisco International Airport. [online] Available at: https://www.flysfo.com/media/press-
releases/sfo-served-all-time-record-558-million-passengers-2017 [Accessed 9 Jun. 2019].

[2] US Department of Transportation. (2019). Flight Delays & Cancellations. [online] Available at:
https://www.transportation.gov/individuals/aviation-consumer-protection/flight-delays-cancellations [Accessed
9 Jun. 2019].

[3] Faa.gov. (2019). Air Traffic By The Numbers. [online] Available at:
https://www.faa.gov/air_traffic/by_the_numbers/ [Accessed 9 Jun. 2019].

[4] Y. J. Kim, S. Choi, S. Briceno and D. Mavris, "A deep learning approach to flight delay prediction,"
2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), Sacramento, CA, 2016, pp. 1-6. doi:
10.1109/DASC.2016.7778092

[5] Gopalakrishnan, Karthik and Hamsa Balakrishnan. “A Comparative Analysis of Models for Predicting
Delays in Air Traffic Networks.” Air Traffic Management Research and Development Seminar, June 2017,
Seattle, Washington, USA, ATM Seminar, June 2017 (©) 2017 ATM Seminar

[6] Horiguchi, Yuji, Baba, Yukino, Kashima, Hisashi, Suzuki, Masahito, Kayahara, Hiroki, AND Maeno, Jun.
"Predicting Fuel Consumption and Flight Delays for Low-Cost Airlines" Innovative Applications of Artificial
Intelligence (2017): n. pag. Web. 8 Jun. 2019

[7] Rebollo, Juan Jose, and Hamsa Balakrishnan. "Characterization and prediction of air traffic delays."
Transportation research part C: Emerging technologies 44 (2014): 231-241.

[8] Takeichi, Noboru, et al. "Prediction of delay due to air traffic control by machine learning." AIAA Modeling
and Simulation Technologies Conference. 2017.

[9] Choi, Sun, et al. "Prediction of weather-induced airline delays based on machine learning algorithms." 2016
IEEE/AIAA 35th Digital Avionics Systems Conference (DASC). IEEE, 2016.

[10] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image
recognition." arXiv preprint arXiv:1409.1556 (2014).

[11] “On-Time : Reporting Carrier On-Time Performance (1987-Present).” Bureau of Transoportation Statistics ,
www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time.

[12] Gene, Selfish. “Historical Hourly Weather Data 2012-2017.” Kaggle, 28 Dec. 2017,
www.kaggle.com/selfishgene/historical-hourly-weather-data#wind_speed.csv.

[13] Defining and Measuring Aircraft Delay and Airport Capacity Thresholds. Transportation Research Board,
2014.

