Deep Learning Implementation of a Recommendation
System for Restaurants

Nasreddine El Dehaibi
CS230 Spring 2019
Stanford University
Stanford, California

ndehaibi@stanford.edu

Abstract— The restaurant industry is on the precipice of
revolutionizing itself given the wealth of information available
from big data. The goal of this project is to build a
recommendation system that leverages the power of deep learning
to accurately recommend restaurants to users. The input to the
algorithm is a collection of data for a given user and restaurant. I
then use a neural network to output the predicted rating that a
user would give to the restaurant. The data used in this still
consists of 1161 samples of restaurant ratings, information about
the restaurant, and information about the customer. I built a
SoftMax classifier in Python using a three-layer neural network
with TensorFlow and compared this to baseline model based on
collaborative filtering and SVD. The baseline model generated an
RMSE of 0.66 while the deep learning model generated an RMSE
of 0.73. While the deep learning model did not perform better than
the baseline, the results are still promising considering that the
dataset is small and that the model is likely overfitting the training
set. The results from this study encourage building deep learning
networks using larger datasets

Keywords—restaurants, deep learning, recommendation systems

I. INTRODUCTION

The restaurant industry is on the precipice of revolutionizing
itself given the wealth of information available from big data.
By merging information that restaurants already have with data
from social media, reservation systems, review sites, and even
weather reports, restaurants can acquire live information on
sales, customers, staff performance, and competitors. This gives
restaurants the ability to personalize customer experience in
ways that were previously unimaginable. It also helps
restaurants run a leaner operation, for example by optimizing
food inventory on any given night [1].

Another area of interest for restaurants is using
recommendation systems to drive demand growth. This is
desirable for both the customers and the restaurants; customers
can find the ideal dining experience that they are looking for and
restaurants can benefit from an increased traffic growth to their
establishments. Traditional recommendation systems are based
on either collaborative filtering or content-based filtering that
group together similar users or items based on user ratings to
recommend different items to users [2]. These approaches are
very popular for applications like movie recommendations,
where a user’s preference is relatively static and can be

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

identified based on just ratings. For other applications however,
such as restaurant recommendations, a user’s preference can
fluctuate much more on any given time or day. This makes it
more challenging to build an effective recommendation system
for this application.

A growing body of research on recommendation systems is
enabling exciting opportunities that leverage the information
from big data. Using approaches from deep learning,
information on the users themselves can be considered such as
ethnicity, marital status, preferred mode of transport, and so on.
Similarly, data on restaurants can be considered such as type of
cuisine, ambiance, parking availability, and so on. This level of
granularity is similar to what humans use when recommending
restaurants to each other and can help make recommendation
systems for restaurants much more effective. The goal of this
project is therefore to build a recommendation system that
leverages the power of deep learning to accurately recommend
restaurants to users. The input to the algorithm is a collection of
data for a given user and restaurant (see section 3). I then use a
neural network to output the predicted rating that a user would
give to the restaurant.

II. RELATED WORK

Gupta and Singh proposed a location-based
recommendation system that considers both user’s location and
demographics to recommend restaurants [3]. Zhang et al. [4] use
conditional random field and hidden Markov model to predict a
user’s next dining based on historical dining patterns, user
profile, and restaurant features.

In addition to location, other data such as user ratings,
reviews, and reservations were also studied to improve
restaurant recommendation. Gao et al. [5] model the relationship
between user ratings and restaurants with regression based on
topic modeling of user reviews. Sun et al. [6] integrated multiple
sources of information, i.e., users’ tasks, their friends’
preferences, and mobility patterns, into the matrix factorization
framework for personalized restaurant recommendation. This is
particularly clever as it factors in historical data from multiple
sources and is arguably the state of the art. Fu et al. [7] proposed
a generative probabilistic model to describe restaurants in in
terms of location, customer attributes, and restaurant attributes.

Instead of explicit user ratings, Kuo et al. [8] relied on users’
restaurant booking history to recommend restaurants.

Although recommender systems have been widely studied,
most studies rely on collaborative filtering methods or on hybrid
methods with classifier methods. Few studies have looked into
deep learning in the context of recommendation systems as it is
still a novel area of research. This paper aims to select a highly
practical application, restaurant recommendations, to investigate
the feasibility of deep learning recommendation systems for
restaurants.

III. DATASET AND FEATURES

The dataset consists of restaurant data with consumer ratings
spanning 9 different data files. It was created by Rafael Medellin
and Juan Serna at the Department of Computer Science in the
National Center for Research and Technological Development
in Mexico [9].

The data from each of the 9 files is explained below:
e Customer-Restaurant-Rating

o 1161 customer ratings for food, service, and
overall on a scale of 0 to 2. Only overall
ratings were considered in this study
(rating_final.csv)

e Customers

o Preferred cuisine for 330 customers

(usercuisine.csv)

o Preferred payment method for 177 customers
(userpayment.csv)

o User profile (location, smoker, religion, etc.)
for 138 customers (userprofile.csv)

e Restaurants

o Methods of payment accepted at 1314
restaurants (chefmozaccepts.csv)

o Type of cuisine for 916 restaurants

(chefmozcuisine.csv)

o Business hours and days for 339 restaurants
(chefmozhours4.csv)

o Parking availability for 702 restaurants
(chefmozparking.csv)

o Location and other information (smoking
section, dress code, ambience, etc.) for 130
restaurants (geoplaces2.csv)

I compiled the dataset into one file to allow quicker
processing of the information. The file contains 1161 rows of
customer ratings from a total of 138 different customers on 130
different restaurants. There is a total of 50 columns that include
customer and restaurant IDs, ratings, and information on the
corresponding customer and restaurant from the dataset. If

information is not available for any given cell, there is a “?” in
place of the cell. Figs. 1-3 show the distributions of the dataset.

15 2 TS

-05 0 05 1

Rating

Figure 1: Distribution of 1161 restaurant ratings

Count

5 10 15 20 25 30

35

Number of Ratings Per Restaurant

Figure 2: Distribution of Number of Ratings per Restaurant

25
15
10
5 l .
- —
G 0 0 2 1 1% % 20

ul 4

Count

Ratings Per User

Figure 3: Distribution of number of ratings per user

Figure 1 shows the distribution of restaurant ratings on a
scale of 0 to 2. There are a similar number of 1 and 2 ratings, but
there are only about half as many 0 ratings. This might bias the
models and is something to look out for. Figure 2 shows the
number of ratings per restaurant. Most restaurants have around
5 ratings, while some have over 35 ratings. Having multiple
ratings per restaurant helps the model capture more information
from different users about each restaurant. Finally, Fig. 3 show
shows the number of ratings per user and is a roughly normal
distribution with most users giving about 11 ratings. This is also
helpful for the model to learn about the variety of user
preferences.

IV. METHODS

The methods used consist of two parts, the first is identifying
a baseline model, and the second is building a deep learning
model. Both parts are discussed below.

A. Building a Baseline Model

There are a number of potential collaborative filtering-based
baseline models from literature. 1 used the Surprise Scikit
package in Python to build a number of these models using the
following prediction algorithms [10]:

e SVD: Equivalent to
factorization

probabilistic ~ matrix

e SVD++: An extension of SVD that considers
implicit ratings

e Baseline Only: predicts the baseline estimate for a
given user and item

e Co Clustering: a collaborative filtering algorithm
based on co-clustering

e NMEF: a collaborative filtering algorithm based on
non-negative matrix factorization

e KNN Basic:
algorithm

e KNN Baseline: basic collaborative filtering
algorithm, taking into account a baseline rating

a basic collaborative filtering

e KNN with Means: basic collaborative filtering
algorithm, taking into account the mean ratings of
each user

e KNN with Z Score: basic collaborative filtering
algorithm, taking into account the z-score
normalization of each user

e Slope One: a simple yet accurate collaborative
filtering algorithm

e Normal Predictor: predicts a random rating based
on the distribution of the training set

To test each model, I split the data into a 75% training set
and 25% test set. I then trained each model using three-fold cross
validation. I then tested each model on the test set using root
mean square error (RMSE) as the error metric.

B. Building a Deep Learning Model

I built a SoftMax classifier in Python using a three-layer
neural network with TensorFlow. I explain the steps I took
below.

I first loaded the data into Python as a Pandas DataFrame. I
then one hot encoded each column and split the data into a
training, validation, and test set with an 80%, 10%, 10% split
respectively. I chose this split considering the small dataset [was
working with; I wanted to include as much data to the training
set as possible while also having enough data to reliably test the
model. With this split, there was 928 training samples, 117
validation samples, and 116 test samples. After splitting the data,
I extracted an X and Y matrix for each of the training, validation,

and test sets. The Y matrix included the one hot encoded
restaurant ratings and had 3 columns, one for each of the
possible ratings (on a scale of 0, 1 and 2). The X matrix consisted
of the remaining one hot encoded columns totaling 1268
columns.

As I was using a TensorFlow implementation, I created
placeholders for X and Y for the tensor flow session. I then
initialized parameters with 100 weights using Xavier
initialization and initialized bias vectors to zero. I then
implemented a forward pass of the neural network using a
standard model: linear, ReLu, linear, ReLu, linear, softmax. The
equations for linear, ReLu, and softmax are shown in Egs. 1 -3
respectively. After that I calculate the cost function using Eq. 4.

Z=Wx+b (1)
0(z) = max (0, z))]
V) = ()

J = ==3n,(5'loga(z?V) + (1 - y) log (1 - o(212®)) (4)

where m is the number of data samples, y" is the label for a
given sample, z is the output of a hidden layer, and o is the
activation function.

After computing the cost function, I then implemented
backpropagation using Adam Optimizer. I chose this optimizer
as it is generally effective and has the benefits of multiple other
optimizers such as RMSProp. It updates learning rates based on
the average first moments as well as the average second
moments of the gradients, effectively creating an exponential
moving average of the gradient and squared gradient. I selected
alearning rate of 0.0001, mini batch size of 32, and 1500 number
of epochs. I manually tweaked these numbers according to the
performance of the model on the validation set.

I then tested the model on the test and calculated the RMSE
between the predicted and actual ratings to allow for comparison
of performance to the baseline.

V. RESULTS AND DISCUSSION

The RMSE values for the different baseline models are
shown in table 1.
Table 1: RMSE for Potential Baseline Models
fit_time test_time

test_rmse

Algorithm

SVvDpp 0.668294 0.109525 0.009100
SVD 0.679372 0.042878 0.004645

BaselineOnly 0.696977 0.000994 0.001838

KNNWithMeans 0.698772 0.002014 0.006794
KNNWithZScore 0.702664 0.006269 0.007673
CoClustering 0.720291 0.031317 0.002127
SlopeOne 0.736563 0.003677 0.004313
NMF 0.742113 0.047225 0.002896

KNNBaseline 0.759941 0.003650 0.006853

KNNBasic 0.849223 0.000602 0.004808

NormalPredictor 1.003145 0.000735 0.001739

The algorithm with the lowest RMSE score was the SVD++
algorithm which takes into account implicit ratings. The
resulting RMSE from this prediction is 0.6712. The highest
RMSE came from the Normal Predictor with an error of 1.00.
This algorithm predicts a rating based on the normal distribution
of the ratings. I decided to be ambitious and choose the lowest
RMSE of 0.6712 as the baseline. It is likely however that this
baseline will be challenging to beat considering the limited
amount of data that the deep learning model can use.

Figure 4 shows the expected behavior of the cost function as
a function of iteration number. The cost function exponentially
decreases until about 100 iterations and then plateaus at around
0 as the network finds a minimum value. The training set
accuracy was a perfect 1.0 while the validation dataset accuracy
was about 0.598. This is reasonable considering the low number
of data available in the datasets which makes it likely that the
neural network model is overfitting the data.

Learning rate =0.0001

10

0.8

0.6

cost

04

02

0.0

T T T T T T T
0 50 100 150 200 250 300
iterations (per tens)

Figure 4: Cost Function versus number of iterations

Testing the model on the test set yielded an RMSE of 0.735.
This is worse than the chosen SVD++ baseline that yielded
0.668. The deep learning model still did better than about half of
the potential baseline models shown in table 1. This is a
promising result since the dataset only had 1161 data samples
and deep learning really shines when there are much larger

datasets available. The likely cause of the limited performance
is due to overfitting of the training data.

VI. CONCLUSIONS AND FUTURE WORK

In this project I implemented a deep learning model for
building a restaurant recommendation system. I used a dataset
from with 1161 data samples of restaurant ratings, restaurant
information, and user information. I first built several baseline
models that based on collaborate filtering including SVD, KNN,
and normal predictor. I chose the best performing model as the
baseline which was the SVD++ with an RMSE of 0.66. I then
built a SoftMax classifier in Python using a three-layer neural
network with TensorFlow. I made an 80%, 10%, 10% split in
the data for a training, validation, and test set respectively. The
lowest RMSE was 0.73, which is not as good as the chosen
baseline but is better than about half of the other baselines
considered. This is a promising result since the dataset only had
1161 data samples and deep learning really shines when there
are much larger datasets available. The likely cause of the
limited performance is due to overfitting of the training data. For
future work, the results from this study encourage building deep
learning networks using larger datasets on the scale of millions.
This will leverage the capabilities of deep learning and help
personalize restaurant recommendations for users.

REFERENCES

[1] https://www.nytimes.com/2017/08/25/dining/restaurant-software-
analytics-data-mining.html

[2] https:/medium.com/recombee-blog/machine-learning-for-recommender-
systems-part-1-algorithms-evaluation-and-cold-start-6£696683d0ed

3] https://ieeexplore.ieee.org/abstract/document/6637223
https://dl.acm.org/citation.cfm?id=2741095
https://link.springer.com/chapter/10.1007/978-3-319-18123-3 33
https://dl.acm.org/citation.cfm?id=2767818
https://epubs.siam.org/doi/abs/10.1137/1.9781611973440.54
https://link.springer.com/article/10.1007/s11280-017-0437-1
https://www .kaggle.com/uciml/restaurant-data-with-consumer-
ratings/version/1

[10] https://surprise.readthedocs.io/en/stable/index.html

&=

i

o0

vl i)
~N O\
—_

\O

