Long Short-Term Vehicle Dynamics

David Casterton
Stanford University, CS230 Spring 2019

david.casterton Ostanford.edu / @gmail.com

Abstract

Vehicle dynamics simulation can achieve excellent results from manually crafted
physical models, however manually crafting models can be time consuming, fi-
nancially and computationally expensive, difficult to tune details, and difficult
to generalize. This project focused on potential roles of Deep Neural Network’s
(DNN5s) to improve vehicle dynamics simulation by utilizing data to learn the
model.

1 Introduction

A key challenge to bringing autonomous vehicles to market is proving they can safely operate within
a very large state space of potential scenarios and associated sensor inputs. Simulation is one of the
leading techniques being pursued to make this proof, due to the promise of scalable parallelization
for rapid feedback and eventual deep exploration of the operational state space. However, before a
simulator can meaningfully inform how a specific real-world vehicle will perform, the accuracy of
the simulation must be well understood and refined to be within acceptable bounds.

This project evaluated if simulated vehicle movement can be improved by learning unmodeled
attributes from vehicle specific data. Results show that training Long Short Term Memory (LSTM)
Recurrent Neural Networks (RNN) for end-to-end learning of vehicle movement can output next
movements with plausible results for some movement features, but that end-to-end learning results
alone do not appear to outperform physics modeling. LSTM experiments were performed with the
input of variable lengths of recent history from vehicle movement and control, and output as the next
update for vehicle movement. Related work indicates that joint usage of physics modeling and novel
LSTM architectures can achieve better results than physics modeling alone.

2 Related work

[4,5, 8, 10] are examples from the mature field of vehicle dynamics modeling, which yields excellent
results however is limited by the manual effort put in to the physical modeling. [1] explores end-
to-end Deep Learning (DL) all the way from camera pixels to vehicle actuation output, this does
not focus specifically on vehicle dynamics but presents a surprisingly successful extreme for the
limit of end-to-end DL in vehicles. [11, 12] present techniques to unify physics models with DNN’s,
with results outperforming physics models alone. [11] specifically presents a nominal dynamics
model combined with a DNN to learn how to control multi-rotor drone movement and landing, which
utilizes modeling for the well known aspects of the problem then extends modeling with a DNN
resulted in better performance than a baseline control system.
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3 Dataset and Features

Data for this project was acquired from [9], which contains 22 files of vehicle dynamics recorded
from an expert driving a 1965 Ferrari in 2013 and 2014 at Monterey Motorsports Reunion and Targa
Sixty-Six events. This data set includes the notable features of: physical inputs to the vehicle (steering,
brake, throttle, clutch), GPS position (latitude, longitude, altitude), velocity and acceleration of the
center of gravity (X, y, z), orientation angle and rate (roll, pitch, yaw), accuracy of position and
orientation, vertical chassis accelerations, suspension deflections, and wheel accelerations.
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Figure 1: Steering, brake, throttle from 2013. Figure 2: Steering, brake, throttle from 2014.

Figures 1 and 2 show zoomed-out examples of full files, which indicate idle time at the start and end
of files, with repeated maneuvers in the middle from race laps.

1250 1260 1270 1280 1200

—— handwheelAngle (right axis) WCG —— yawAngle (right axis)

Figure 3: Zoomed-in longitudinal signals. Figure 4: Zoomed-in lateral signals.

Figures 3 and 4 show zoomed-in example data from the data set with strong correlations. Figure 3
shows that throttle and brake have a strong correlation with longitudinal velocity (vxCG). Figure 4
shows that hand wheel angle has a strong correlation with lateral velocity (vyCG) and yaw angle,
however these correlations have some unintuitive attributes: hand wheel angle has an inverted sign
from lateral velocity (vyCG), and yaw angle has a discontinuity at +/-180 where it inverts its sign.

This data set was recorded at 1000 Hz, however since some signals only update at 100Hz I chose
to sample the data for training with a stride of 10. Some signals I considered critical (velocity,
acceleration, orientation) appear to have originated from a GPS sensor that occasionally stopped
updating, which resulted in those signals being temporarily incorrect then jumping with a discontinuity.
To sanitize GPS discontinuities from this data set all rows were removed that contained null for GPS
altitude.

4 Methods

4.1 Hand engineering features into data

The initial method pursued was to hand engineer features into the input data set that were considered
to optimize for learning. The hypothesis was to train a neural network using all input columns
available to output the change in position and orientation for the next time step. To accomplish
this additional columns were appended to input data with the discrete derivatives of position and



orientation between the current time ¢ and 7+ 1. Then to avoid the idle times shown in Figures 1 and 2
disproportionately impacting the training, dev, or test set, all rows were shuffled to create an equal
distribution across a file. Once a file had an equal distribution the rows were split 90% training, 5%
dev, 5% test, then the columns were separated so original columns became input features and the new
discrete derivatives became output labels.

Sequential TensorFlow models composed of a variable number of dense layers were trained against
the data strategy described above, with limited success. After spending more time with the data it
became apparent that this strategy was not adequately accounting for the delay between human inputs
(steering, brake, throttle) being given to the vehicle and the resulting actuation (motor, brake, steering
response) - training against labels for the discrete derivative of the next time step only did not give
adequate time for the input to result in a learnable actuation response. A brief attempt was made to
hand engineer features with longer input/output relationships, however this was quickly abandoned in
favor of pursuing a network architecture that could learn temporal sequences.

4.2 Long Short-Term Memory Recurrent Neural Networks

To handle the problem of unknown temporal delays between vehicle input and output actuations, a
RNN was chosen due to its ability to make decisions from a temporal sequence [6], with the hope
that would enable relationships to be learned with unknown temporal delays.
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Figure 5: LSTM network architecture. Figure 6: LSTM cell from [7]

Figures 5 and 6 show an LSTM’s network architecture and the contents of a single cell within the
network models. The LSTM cell is primarily composed of the following attributes: forget gate,
update gate, and output gate. These gates are defined by the following equations from [7]:

4.2.1 Forget Gate

Fjﬁ = a(Wy[a*D,2®] +bf) (H

4.2.2 Update Gate
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4.2.3 Output Gate
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Data was then separated into 3 dimensions: # of input features (n_x), # of data samples (m), sequence
length (T,).

5 Experiments/Results/Discussion

Appendix A shows a table of attempted model parameters, hyperparameters, and input/output data
sets (further defined in Appendix B), and the resulting loss and mean absolute error for each model.
Source code for models is available [3]. The models that resulted in optimal results involved an input
sequence length from 100-200 (1-2 seconds worth of history), and took about 5 hours to train on an
NVIDIA GTX 1080 Ti.

For example, Model ID 80 from Appendix A achieved a mean absolute error of 0.95 when trained to
data set group x3 (Appendix B.3) and output group y4 (Appendix B.8). Model 80 was composed of 3
layers:

1. LSTM layer 1

e input sizes: n_x = 20, m = 132,645, T, = 160
e output sizes: n_y = 160, m = 132,645, T,, = 160

2. LSTM layer 2

e input sizes: n_x = 160, m = 132,645, T, = 160
e output sizes: n_y = 160, m = 132,645

3. Dense layer

e input sizes: n_x = 160, m = 132,645
e output sizes: n_y = 10, m = 132,645

Figures 7, 8, 9 are zoomed-in plots of Model 80 predictions. These figures visualize that different
vehicle dynamic features were learned with variable success:

o longitudinal velocity: (Figure 7) Mean Squared Error (MSE) of 1.88 with an input value
range of 61.72, resulting in MSE of 3.04% of the input range. Longitudinal velocity appears
to have been successfully learned as hoped due to strong correlation with the throttle and
brake pedal input, after some time delay. However the model appears to accumulate most of
its error when input values go beyond 50, future work would be needed to understand why
the model appears to be failing to output values much beyond 50.

o lateral velocity: MSE of 0.27 on input range of 4.04, resulting in MSE of 6.91% of range.
Lateral velocity was not as successful at being learned as longitudinal velocity, this is
likely due to a weaker correlation between steering input and lateral velocity as well as a
significantly smaller input range for this feature.

o yaw angle: (Figure 8) MSE of 2.96 on input range of 359.98, resulting in MSE of 0.82% of
range. Yaw angle appears to have been quite successfully learned as hoped due to strong
correlation with the steering wheel angle. It is surprising how well the model was able to
handle yaw angle discontinuities when it exceeds +/-180, how this is being accomplished
would benefit from further investigation.

e wheel acceleration: (Figure 9) MSE of 1.53 on input range of 83.88, resulting in MSE of
1.83% of range. Wheel acceleration data appears to be reporting with too high of a frequency
for the model, which is resulting in the model appearing to low-pass filter this feature.

Additional models were trained to single outputs and were able to achieve the following results:
e Model 95 was trained to longitudinal velocity only and achieve MSE of 0.43.

e Model 90 was trained to lateral velocity only and achieved MSE of 0.09.
e Model 97 was trained to yaw angle only and achieved MSE of 1.89.
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Figure 7: Model 80 zoomed-in longitudinal velocity test set actual vs predicted.
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Figure 8: Model 80 zoomed-in yaw angle test set actual vs predicted.
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Figure 9: Model 80 zoomed-in front left wheel acceleration test set actual vs predicted.

6 Conclusion/Future Work

From these results LSTM’s outperformed attempts to hand engineer temporal relationships into the
data then train with simple multi-layer networks, and LSTM models appear generally capable of
learning vehicle dynamics with temporal delays. However, LSTM results still had a significant MSE
between predicted future results and actual future results in the test set, so the investigated network
architecture does not appear to be a candidate to threaten replacing hand modeling vehicle dynamics
for simulation.

For future work I would like to investigate:

1. Integrating physical modeling with a RNN: as proposed by [11, 12]. The approach
proposed in both [11] and [12] is to utilize a physics model to implement the known features
of movement then integrating with a learning model to fine-tune the unknown features or
hardware unit specific features. Specifically, I would like to integrate a TensorFlow LSTM
model with the PyBullet [2] physics simulator’s vehicle model, then apply common steering
/ brake / throttle input in simulation as from a real-world data capture and plot the resulting
differences in position and orientation over time.



2. Predict movement farther into the future: this project continually predicted only the next
step of movement based on recent history, it would be interesting to understand how much
future movement could be accurately predicted based on the recent past.
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7 Appendix

A Model Hyperparameters and Results

X and Y data groups are defined in Appendix B
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x1 yl 0.0 0.02 0.0 | 0:03:49 | True 10 10 1
x1 yl 0.0 0.02 0.0 | 0:06:36 | False | 10 10 1
x1 yl 0.0 0.02 0.0 | 0:04:08 | True 10 10 1
x1 yl 0.1 0.02 0.0 | 0:11:04 | False | 10 10 1
x1 yl 0.1 0.02 0.0 | 0:05:12 | True 10 10 1
x1 yl 0.1 0.02 0.0 | 0:04:49 | True 10 10 1
x1 yl 0.0 0.02 | 1e-06 | 0:04:49 | False | 10 10 1
x1 yl 0.0 0.02 | 1e-06 | 0:03:16 | True 10 10 1
x1 yl 0.0 0.02 | 1e-06 | 0:07:00 | False | 10 10 1
x1 yl 0.0 0.02 | 1e-06 | 0:04:09 | True 10 10 1
x1 yl 0.1 0.02 | 1e-06 | 0:10:32 | False | 10 10 1
x1 yl 0.1 0.02 | 1e-06 | 0:02:22 | True 10 10 1
x1 yl 0.1 0.02 | 1le-06 | 0:07:21 | False | 10 10 1
x1 yl 0.1 0.02 | 1e-06 | 0:05:17 | True 10 10 1
x1 yl 0.0 0.01 0.0 | 0:04:59 | False | 10 10 1
x1 yl 0.0 0.01 0.0 | 0:05:09 | True 10 10 1

loss
12.05
19.03
84.33
327.15
8.86
88.96
11.65
327.02
64.09
21.29
326.67
11.55
42.52
12.07
327.1
12.4
49.21
15.06
229.6

mean error

1.47
1.63
3.23
5.29
1.36
34
1.43
53
2.67
1.96
5.28
1.5
2.58
1.5
53
1.5
2.61
1.67
431



0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.002
0.001
0.002
0.002
0.002
0.002
0.001
0.002
0.001
0.005
0.005
0.005
0.008
0.008
0.005
0.008
0.008
0.008
0.008
0.005
0.005
0.008
0.005
0.005
0.005
0.008
0.008
0.005
0.008
0.005
0.008

0:12:16
0:07:28
0:07:51
0:03:28
0:08:28
0:06:05
0:06:54
0:13:04
0:12:38
0:11:11
0:19:28
0:08:55
0:15:04
0:09:15
0:16:28
0:27:15
0:21:56
0:26:26
0:21:00
0:29:52
0:24:44
0:30:47
0:17:31
0:29:00
0:20:38
0:24:18
0:31:49
2:50:53
0:49:02
1:40:20
0:31:11
1:35:48
1:32:49
3:02:05
2:53:17
3:56:08
1:10:24
0:17:54
1:35:55
0:32:45
0:06:46
0:30:35
0:28:22
1:34:14
0:57:13
0:44:49
2:17:15
1:00:10
2:21:13
0:40:49
0:32:51
0:12:52
0:47:47
0:33:41
1:05:57
0:20:30
3:04:33
2:04:00
2:11:14

False
True
False
True
False
True
False
True
False
True
False
True
False
True
False
True
False
True
False
True
False
True
False
True
False
True
False
False
False
False
True
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False
False

10

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
20
110
60
100
200
90
70
160
160
130
70
20
190
140
10
130
20
160
60
190
110
190
190
50
100
20
50

80
30
190
120
190

10

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
20
110
30
100
100
90
70
160
160
130
70
20
190
140
10
130
20
160
60
190
110
190
190
50
100
20
50

80
30
190
120
190

A dOUNJWWJWUNNNPARARNOUNNDJION N WNWL — B TN BN P U e e e e e b e et et et o bt e o ot o ok ot ok ok ot ot ok ot ot o ot o o ok ek

6.77
18.41
10.37
326.39
9.59
21.2
9.99
25.53
6.63
10.68
8.36
20.14
8.31
15.58
5:73
6.5
5.14
5.69
6.61
7.55
6.82
7.49
5.53
6.13
5.16
5.95
5.37
5.48
10.88
8.67
646.85
7.41
9.16
7.71
6.06
6.86
7.08
34.24
7.99
10.75
26.07
10.6
11.04
7.72
7.75
10.46
7.33
8.66
9.01
15.9
16.48
22.62
10.13
11.62
10.05
18.78
9.35
10.74
13.04

1.19
1.85
1.37
53
1.34
1.84
1.42
2.18
1.16
1.48
1.27
1.8
1.25
1.65
1.04
1.13
0.94
1.04
1.11
1.21
1.11

1.01
1.09
0.96
1.08
0.99
0.98
1.17
1.07
7.69
1.15
1.28
1.17
1.02
1.11
1.08
2.33
1.17
1.35
1.93
1.42
1.43
1.23
1.16
1.44
1.12
1.25
1.12
1.42
1.42
1.59
1.17
1.27
1.18
1.53
1.17
1.18
1.31



79

81
82
83
84
85

87
88
89
90
91
92
93
94
95
96
97
98

100
101
102
103
104
105
106
107
108

x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x4
x4
x4
x4
x4
x4
x4
x4
x4

pitchAngle
wheelAccelRL
vyCG
vyCG
vxCG
rollAngle
pitchAngle
rollAngle
vxCG
yawAngle
yawAngle

B Data Set Groups

B.1 x1

axCQG, ayCG, azCQG, brake, chassisAccelFL, chassisAccelFR, chassisAccelRL, chassisAccelRR,
clutch, handwheelAngle, deflectionFL, deflectionFR, horizontalSpeed, pitchAngle, pitchRate, rol-
lAngle, rollRate, throttle, vxCG, vyCG, vzCG, wheelAccelFL, wheelAccelFR, wheelAccelRL,
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B.2 x2

brake, clutch, handwheel Angle, throttle, horizontalSpeed, pitchAngle, pitchRate, rollAngle, rollRate,
vxCG, vyCG, vzCG, yawAngle, yawRate

B3 x3

brake, clutch, handwheelAngle, throttle, pitchAngle, pitchRate, rollAngle, rollRate, yawAngle,
yawRate, vxCG, vyCG, vzCG, axCG, ayCG, azCG, wheelAccelFL, wheelAccelFR, wheelAccelRL,

wheelAccelRR

B4 x4

brake, clutch, handwheelAngle, throttle, pitchAngle, pitchRate, rollAngle, rollRate, yawAngle,
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B5 yl

axCG, ayCG, azCQG, chassisAccelFL, chassisAccelFR, chassisAccelRL, chassisAccelRR, horizontal-
Speed, pitchAngle, pitchRate, rollAngle, rollRate, vxCG, vyCG, vzCG, wheelAccelFL, wheel Ac-
celFR, wheelAccelRL, wheelAccelRR, yawAngle, yawRate

B.6 y2

pitchAngle, rollAngle, vxCG, vyCG, vzCG, wheelAccelFL, wheelAccelFR, wheel AccelRL, wheel Ac-
celRR, yawAngle

B.7 y3

pitchAngle, pitchRate, rollAngle, rollRate, yawAngle, yawRate, vxCG, vyCG, vzCG, axCG, ayCG,
azCG, wheelAccelFL, wheelAccelFR, wheelAccelRL, wheelAccelRR

B.8 y4

pitchAngle, rollAngle, yawAngle, vxCG, vyCG, vzCG, wheelAccelFL, wheelAccelFR, wheelAc-
celRL, wheelAccelRR

B9 y5

rollAngle, yawAngle, vxCG, vyCG, vzCG

B.10 y6

yawAngle, vxCG



