Spoken Command Recognition

Thomas Karpati
Department of Computer Science
Stanford University
tkarpati@stanford.edu

Abstract

Interactions with agents in the world has increasingly been using voice commands,
allowing users to interact without the use of a terminal input such as when they
are not in close proximity, are otherwise physically occupied, or users such as
children who are illiterate and cannot use standard computing interfaces which
would require the ability to read. In the simple case such an agent would need to be
able to recognize basic commands to perform tasks. We propose a 2D convolutional
and recurrent network model for this task.

1 Introduction

Speech recognition is allowing more accessible interactions with agents. Deep learning systems
have enabled improved speech recognition accuracy through sequential models, which increases the
accessibility of system to a wider variety of users, and allows interactions with agents who may not
be in physical proximity of the user. Often the inputs to these sequential models is the spectrogram
representation of an audio waveform. This is a representation which converts the time domain audio
waveform into a multidimensional basis space for segments of time over a sliding window. The result
of this is a multidimensional representation of the audio waveform during a specified period of time.
As these are accumulated over time, this can be seen as a two dimensional representation of the audio
waveform. Our algorithm explores applying two dimensional network architectures to a traditional
sequential model for speech recognition processing as a more hybrid model for performing speech
recognition.

The inputs to our algorithm are audio waveforms. We have 10 known classes of commands and
two additional classes which are an unknown command class and a no spoken word class. Our
network requires an initial processing step to generate the spectrogram of the waveform as input
to the network. In addition to our proposed hybrid network, we also explore performing complete
end-to-end processing in our network from the raw audio waveform without any pre-processing steps.

2 Related work

There are several approaches to the speech recognition problem. Dominant approaches involve use of
recurrent networks which take the sequential nature of the audio as it progresses through time into
account. These vary from those with simple recurrent cells to larger more complex bi-directional
recurrent cells that process large segments of time at once[1]. Other approaches to the command
recognition problem involve use of both 1D and 2D convolutional networks[5, 2] as well as simple
fully connected dense networks over the spectrogram of the data.

Both of these approaches have their advantages and drawbacks. The fully connected dense and two
dimensional convolutional networks can extract significant features across the entire space of the input

CS230: Deep Learning, Spring 2019, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

to the network by using the entire time and frequency information available[3]. The 2D convolutional
network is able to extract features from both across time and across frequencies by applying network
structures from image processing to the spectrogram([6]. This approach does indirectly ignore the
sequential nature of the data (but can take this into account by the relative weights of the connections
to different parts of the spectrogram) however the exact position of the utterance in question needs to
known so that the utterance can be located properly within the time frame that is being looked at.

The recurrent networks take the sequential nature of speech into account. These networks have shown
to be highly effective in speech recognition, and typically use the spectrogram as the input feature
transformation to the input of the network. Effective speech recognition systems will typically also
employ bidirectional recurrent cells for encoding the speech data[8]. The drawback here is that
bidirectional networks will impact the latency for command detection. While effective for speech-to-
text or translation domains, keyword and command recognition system are latency sensitive, and thus
the bidirectional nature of these recurrent networks are impractical. Also, systems which implement
1D convolution before the recurrent cells, while taking the frequency domain into account, do not
fully allow for convolution across the frequencies. Even systems that only convolve in two dimensions
may not be taking invariance into account in the input waveforms without the pooling layer.

The current state of the art for the dataset in question applies a basic convolutional filter in two
dimensions and bi-directional LSTM cells with an accuracy just over 95%[8]. The latest statistics
from the Kaggle competition has a best accuracy of approximately 90%[4] on test set data.

We seek to achieve similar results without the use of bi-directional recurrent cells which would
decrease the latency of the models. Our proposed model can overcome the limitations of either of
these approaches by both implementing the convolutional approach and using this to feed into a
forward only recurrent layer. Following from image processing convolutional network, we extend
these architectures with multiple two dimensional (time and frequency domain) convolutions followed
by a max pooling layer to add invariance and reduce the inputs to the following layers.

3 Dataset and Features

To evaluate models for spoken command recognition, we used the dataset provided for the Kaggle
TensorFlow speech recognition challenge [4, 7]. This dataset contains 10 labelled commands which
are “yes”, “no”, “up”, “down”, “left”, “right”, “on”, “off”, “stop”, and “go”. In addition to these, the
dataset is augmented with two additional classes which are “unknown” and silence. The “unknown”
class contains other utterances that are not the commands that we are trying to categorize. The silence
class corresponds to no utterance, in other words - background noise. The input data is provided
as audio clips in WAV format sampled at 16KHz. This data set therefore maps an audio file to 12
possible classes. The audio provided is all approximately 1 sec in duration, with some slight variation
in length. The dataset contains 64,727 audio samples. Along with the examples are also provided
lists of examples for both validation and test set splitting. There are 6835 validation samples and
6798 test samples provided. The remaining of the 64,727 samples are used for training.

The entire data set comprises 30 possible spoken commands in approximately equal distribution. Of
these, only 10 are commands that are to be differentiated. The remaining 20 are other words that are
spoken which get accumulated into the “unknown” class and are not differentiated.

The 64,727 audio samples were preprocessed. For each sample, if the sample belonged to the 10
classes that we are interested in, they were labeled with that class, otherwise they were labeled with
the “unknown” class. If the sample was background noise, it was labeled with the “silence” class.
After the samples were re-binned into the classes that we are interested in, they were all converted to
a common size. Most samples are of 1 second in duration at 16KHz, or 16,000 samples in length,
allowing for easily creating batches. Any audio clips that are too long have a 16,000 sample window
taken from the too long length clip. Any audio clips that are too short are padded to the correct
length. The only other preprocessing of the data from the WAV file was to scale the waveform to
have amplitude in the range [-1,+1].

Model evaluation was done with the use of spectrogram to transform the audio waveform. The
spectrogram computes the magnitude of the short time Fourier transform of the 1D audio waveform
over a short window of the data. The window of the transform passes over the waveform through time
with some stride. This representation of the data provides the magnitude of different frequencies that

Audio Spectrogram

0.035
0030
0.025
0.020
0.015
0010
0.005
0 20 a0 60 80

Time (window index)

250

200
- ;100

(a) Audio waveform of utterance “right” 50

0

CH

(b) Audio spectrogram of utterance “right

Figure 1: Representations of audio data

:

(a) Baseline convolutional model (b) Convolutional-recurrent model

Figure 2: Model architectures evaluated

compose the audio waveform during the time window that is under consideration. The spectrogram
of the utterance “right” is seen in figure 1b. The spectrogram shows that the waveform is composed
of large magnitudes of frequencies at the low end corresponding to the word. For evaluation of the
model without the use of spectrograms as input data transformation, the audio waveform was used
keeping the sampling rate at 16KHz.

4 Methods

As a simple baseline model, a simple multilayer convolutional neural network (CNN) was evaluated[1].
The motivation behind a CNN network architecture is to take advantage of the 2D nature of the
spectrogram of the sound wave. Since the spectrogram is two dimensional, a 2D convolutional filter
should be able to extract features from this representation of the input. Coupled with this is the fairly
consistent size of the input audio waveform, and a CNN network can take the spectrogram of an
entire speech utterance as an input image. The specific CNN model that was used for the baseline is a
4 layer CNN interleaved with 2x2 max pool layers[S]. The convolutional layers all implement 3x3
filter kernels and contain power of two multiples of 16 filters per layer (The layers from 1 to 4 contain
16, 32, 64, 128 filters respectively. These are then followed by 2 fully connected layers and finally a
softmax output layer. The baseline model is described in figure 2a. Also evaluated are networks with
time dimensional convolutions fed to a recurrent LSTM layer. These would correspond to the more
traditional recurrent speech recognition networks.

These two models are merged into a hybrid network (figure 2b) taking the advantages of both systems.
At the end of the convolutional layers, we are left with a time sequence of several frequency features
for each of the filter bank outputs. At this point, instead of performing a max or average pooling step
across all of the frequencies, we stack all of the frequency and filter outputs for a point in time into a
single feature vector at that time point. This allow for keeping separate features for the output of each
filter bank to feed into the recurrent layers following a fairly standard multi-layer recurrent network.
which feeds to a softmax output to determine the command class.

The proposed network takes a batch of spectrograms of audio data, since our data has been processed
to all be of a fixed length at 16,000 samples. The input spectrogram contains 512 frequencies over a
window length of 512 samples of the audio waveform. The audio windows for spectral transformation
have a stride of 160 pixels (or 10ms) of audio. This generates an input data set of 512 frequencies
over 97 time samples of data. This feeds multiple 2D convolutional and max pooling layers.

Input T, xF,_ x 16°21 Output: T, x Fyx 1672

| ')
[oovout [| | o] o]
— Convzg NME:“";';“M Dropout Ajis:k‘o & [MaxPool 2D Yoep rate: 0.7 . . (oo em |
| LsTM | | LsTM | | LsTM LsTM
emel si Y 4
pr—— o 1 L
Strde: 2. =) /-

Output: Ty x FLgr

Stride: 1 Keep rate: 0.7

2D Convolutional 4{ Feature Flattening ‘ Convolution to
Layer Recurrent Layer
InpUL T, X, x 167

Size: T,, (F, x 16°20)

(a) Convolutional layer detail (b) Convolutional to recurrent layer

Figure 3: Details of proposed model layers

The convolutional layers successively perform 2D convolution on the input. Following the convolution
is a batch normalization layer to aid in training. Before being fed into the next set of convolutional
layer there is a dropout layer to aid in reducing the variance of the network. This is then fed into the
activation layer which uses a ReLU activation function. Finally, there is a max pooling step with a
2x2 window and a stride of 2 samples to produce the output of the convolution layer. This set of
layers are repeated with more filters used in each layer. The convolutions will extract features in
both the time and frequency domains and look for certain patterns in the data. The max pool step in
each layer provides some level of invariance in both time and frequency to account for variations
in the speed that the speaker is speaking and also the pitch of the speaker. The multiple layers will
extract larger and larger features in the data where individual sounds uttered can vary in both time
and frequency due to the use of the max polling layers to aid in robustness. Details are provided in
figure 3a.

The outputs of the convolutional portion of the network are then flattened per time step and fed to
one of more recurrent layers as described in figure 3b. These recurrent layers perform sequential
modeling of the input data from the convolutions over time. The LSTM layers use a hyperbolic
tangent activation function. The recurrent activation function is the hard sigmoid function.

These recurrent layers allow us to process the audio data over time without needing to have access to
the entire sample all at once. The advantage here is that we can continually feed data into the recurrent
network as we get more audio data which overcomes the main drawback of the fully connected or
convolutional only network architectures. Beyond that, as we get more audio data over time, we can
only keep a window of convolutional results and add to it as we get more raw data. We don’t need to
keep all of the raw data to process, but rather only enough that we can generate new convolutional
results as needed. The output of the last LSTM layer passes into a fully connected layer which
generates a softmax output.

We also explored having the network learn the basis function for a spectral transform which is
currently performed by the short-time Fourier Transform to compute the spectrogram which would
allow our system to be a true end-to-end system where it would be fed only samples of audio. This is
accomplished by multiple filter banks of a single one dimensional convolution layer in the network at
the input which would produce an output like the spectrogram but projecting a window of data from
the audio waveform into a learned set of basis functions instead of sine and cosine waves.

The loss for the network is the categorical loss function for single class selection based on one-hot
encoding. The entire network is trained using the Adam optimization algorithm using a learning rate
of 0.001 and a learning rate decay of 0.0001.

Our models were developed in Python with the Keras framework running on a single the TensorFlow
backend. Experiments were run on Google Cloud using the Deep Learning VM with an NVidia Tesla
K80 GPU attached. The system could train a 2 million parameter model at approximately 500ms
per step. This results in training our model with 3 conv2d layers and 2 recurrent layers with batch
normalization, dropout, and learning rate decay for 20 epochs in approximately 75 minutes. Code is
available from GitHub: https://github.com/tomkarpati/cs230.git

5 Experiments/Results/Discussion

Our baseline model produced fairly decent results in line with our expectations. The model produced
80% accuracy on the test set provided with the dataset. While the results were reassuring, the model

Architecture Convolutional Kernel | Recurrent [Other | Parameters [Accuracy
Size | Stride [# Layers | #Cells | # Layers | | Total | Trainable | Train [Validation

Dropout=0.5, FC (N=128), Activa-

|
|
‘ Baseline

|
| |
’ 3 ‘ ‘ 4 ’) ’ tion=ELU, Global pooling ‘ } ‘ 0:8066 ’ 0.8073 ‘
Keras Baseline | 3 | 1 4 Dropout=0.5, FC (N=128), Activa- | » o4 | 5048k | 09805 | 0.0206
tion=ELU, Flattening
[ConvldLSTM [3 [1] 2 [128] 1 [Dropout=0.7, Ir_decay=0.0001 [383K | 382K [0.9005] 0.9081 |
[com2dLSTM [3 [1] 3 [128] 3 [Dropout=0.7, Ir_decay=0.0001 [1,439K | 1,437K [0.9860 | 0.9459 |
[conv2d LSTM [3 1 1] 3 [256] 3 [Dropout=0.7, Ir_decay=0.0001 [3.,509K | 3.507K [09875 [0.9385 |
[conv2d LSTM [3 [1 7] 3 [384] 3 | Dropout=0.7, Ir_decay=0.0001 [6,235K | 6,232K [0.9892 | 09135 |
conv2d LSTM 3|1 3 128 3 | Dropout=0.7, Ir_decay=0.0001, fft | g,y | 913k | 09863 | 0.9020
(1=256,5=128)
Dropout=0.7, Ir_decay=0.0001,
conv2d LSTM 3 1 3 128 3 (=128 5=64) 652K 651K 0.9839 0.9319
Dropout=0.7, Ir_decay=0.0001,
conv2d LSTM 3 1 3 128 3 £(1=64,5=32) 521K 520K 0.9831 0.9272

Table 1: Summary experimental results

still suffered from the drawbacks outlined above. The second of our models was the recurrent network
with non-pooling single dimensional convolution. While this model addressed the drawbacks of the
convolution only baseline model, this model produced worse results in the simple case. The 1D
convolutional model was tuned to get an idea of the impact from different parameters.

A summary of results of tuning the 1D convolutional baseline mode are outlined in table [?]. The
largest impact was provided by both an increase in the number of convolutional layers and the
number of recurrent layers as expected. The training accuracy of the model increased from a single
convolutional layer to 3 convolutional layers and 1 LSTM layer to 3 LSTM layers. While the training
accuracy of the model was fairly high, the model showed high variance as seen by the much lower
accuracy number on the validation data without dropout. A dropout keep rate of 0.7 produced good
results, but a lower rate appeared to spread the features too much across the weights between the
layers. For the 1D convolutional model, the larger kernel sizes produced better results. To counteract
the noise in the loss functions as the loss converged to zero, we introduced learning rate decay and a
value of 0.0001 produced good results.

Our two dimensional convolutional model was also tuned across the same lines (citetab:summary-
results). Again we increased layers to 3 convolutional layers and 3 recurrent layers. Training speed
was increased with batch normalization and variance reduced with dropout at a keep rate of 0.7. With
the two dimensional convolutional layers, we noticed a decease in accuracy with the increase in 2D
convolutional kernel sizes and strides. Additionally, increases in the number of hidden nodes in our
LSTM layers marginally increased our training accuracy, but this did not translate to any increase
in our validation results indicating overfitting of our data. In addition, we also looked at effect of
varying the FFT parameters that were used to feed the spectrograms to the network. Decreasing the
FFT length and window size over the values 512, 256, 128, and 64 did not produce any better results
as the FFT got smaller, however the number of parameters did get smaller resulting in a smaller and
faster model computationally and less required memory.

Finally, we attempted to have the network learn basis functions for the initial raw audio preprocessing.
The addition of the one dimensional convolutional layer resulted in our model becoming untrainable.
Our training and validation set accuracies were not able to increase beyond about 60%. We started
with a 1D convolutional kernel of 512 samples and stride of 256 samples. The trainability of our
model didn’t see any improvement as the size of the initial 1D kernel was decrease through 256, 128,
and 64 samples (with 1/2 FFT with window stride through the audio data). The initial basis function
mapping appeared to be too large for the model to be able to minimize the loss functional effectively.

6 Conclusion/Future Work

We found that the our hybrid convolutional and recurrent network produced good results on our
dataset but we believe it would be better suited to command detection in the real world than some of
the other 2D convolutional and fully connected networks that we had looked at due to the use of the
unidirectional recurrent cells due to some invariance on both the time and frequency domains. Our
attempts to learn new basis functions to replace the initial short-time Fourier transform preprocessing
step were unproductive. Additional work would involve more testing of utterances of commands
from other speakers that are not used in either the training or validation steps to determine accuracy

to commands spoken by users who have never been seen before. Finally, additional work would be
to implement a simple preprocessing step to differentiate any utterances from background noise to
initially screen out background noise, and reduce the overall computation that the system performs
over time, to just the time when the system can determine that it actually needs to be paying attention.

References

[1] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Battenberg,
Carl Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen, et al. Deep speech 2:
End-to-end speech recognition in english and mandarin. In International conference on machine
learning, pages 173-182, 2016.

[2] Sercan O Arik, Markus Kliegl, Rewon Child, Joel Hestness, Andrew Gibiansky, Chris Fougner,
Ryan Prenger, and Adam Coates. Convolutional recurrent neural networks for small-footprint
keyword spotting. arXiv preprint arXiv:1703.05390, 2017.

[3] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Brian Kingsbury, et al. Deep neural

networks for acoustic modeling in speech recognition. IEEE Signal processing magazine, 29,
2012.

[4] Kaggle. Tensorflow speech recognition challenge, 2019.
[5] Alex Oxerin. End-to-end baseline tf estimator Ib 0.72, 2019.

[6] Tara Sainath and Carolina Parada. Convolutional neural networks for small-footprint keyword
spotting. 2015.

[7] Pete Warden. Speech commands: A public dataset for single-word speech recognition. Dataset
available from http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz, 2017.

[8] Yundong Zhang, Naveen Suda, Liangzhen Lai, and Vikas Chandra. Hello edge: Keyword spotting
on microcontrollers. arXiv preprint arXiv:1711.07128, 2017.

