Language Translation using RNNs

Gita Krishna Jackson Eilers Faraz Abbasi
Department of Computer Science
Stanford University
{gitakris, jeilers, faraz13}@stanford.edu

Abstract

This project aims to evaluate several different approaches to neural machine transla-
tion, incorporating deep learning techniques such as sequence to sequence models,
long short-term memory cells, and self-attention. This paper contains an in-depth
analysis of each approach, and an error analysis of hypothesis translations made
by the model. The accuracy metrics used here are BLEU scores. The models built
perform French to English translation.

1 Introduction

The inability to communicate due to language barriers is one of the largest impediments we face as a
society today. We can even see the importance is business. For example, HSBC Holdings, a major
UK based bank lost 10 million dollars in rebranding costs after their campaign “Assume Nothing”
was translated to “Do Nothing” in a number of countries across the world. This translator, in whatever
form it took on, lacked the intelligence to identify the context within which the original statement
existed. This issue is something we are working to circumvent with our system. However, this issue
doesn’t just stop at business. It extends to the international relations as well. Take for example aid
relief across countries. Between two countries that speak different languages, take Mexico and the
United States, the efficiency of communication during a natural disaster is of upmost importance.
With every moment passing incredibly detrimental, it is important to have an institution in place that
satisfies is more efficient than human translators, that must be contacted and are much slower than a
computer. We used Data from the EMNLP 2011 Sixth Workshop on Statistical Machine Translation
as our input (courpuses of sentence in both French and English). Then, we used RNNss to learn the
translations of these sentences and as an output we try to translate a sentence from French to English
or vice versa. Our project consists of comparing different models, namely:

e Model 1: Sequence to Sequence Recurrent Neural Network (RNN) with Adam Optimization,
Gradient Clipping, Dropout, and L2 regularization

e Model 2: Sequential Long Short-Term Memory (LSTM) RNN with Nadam Optimization

e Model 3: Seq2seq RNN with LSTM cells and Stochastic Gradient Descent (SGD) as the
method of optimization. Model with and without an attention mechanism.

2 Related work

One related paper that we looked at was Park Chansung’s Seq2Seq model in TensorFlow which
used a sequence to sequence (seq2seq) RNN with gradient clipping, Adam optimization and dropout.
One shortfall of this model was the restricted portion of the WSTM 2010 French-English Corpeum
while another issue stemmed from the hyperparameters, whose usage we found were sub-optimal. In

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



these ways our model 1 differs, as we tuned hyperparameters, added L2 regularization to bolster the
efficiency of training and also added Bleu scoring to better tune and test the model.

The model used in "Sequence to Sequence Learning with Neural Networks" had multi-layered LSTM
cells in order to map an input sequence into a fixed dimensional vector. The use of LSTM allows
the model to better understand the context of the input. This model is most similar to our model 2,
however it differs most starkly with this technique in LSTM training. There is similar related work in
the paper "Effective Approaches to Attention-based Neural Machine Translation".

Another model (see image below) from "Neural Machine Translation with Word Predictions" uses
an encoder-decoder structure similar to our Models 2 and 3. This paper uses a word prediction
mechanism, wherein the decoder is able to predict individual words in a target sentence as part of the
learning objective for the initial state. For this, this model incorporates a gated recurrent unit (GRU),
which has been shown to perform well in speech recognition and machine translation.

Encoder |

The model described in "A novel approach to neural machine translation" used CNNs, in contrast
to all our models which used RNNs. As described in their paper, CNN’s have two main advantages
bring its ability to compute elements simultaneously and that they process information hierarchically,
allowing it to capture complex relations in data. While in research RNN usually outperform CNN’s,
the CNN’s ability to capture more complexity gives it the unique ability to better translate across
more grammatically nuanced languages.

3 Dataset and Features

We are using Data from the EMNLP 2011 Sixth Workshop on Statistical Machine Translation, which
focuses on translation between various European languages. Large portions of this data come from
the European Parliament Proceedings Parallel Corpus, which contains sentence aligned text for
translation systems in 21 languages. This dataset also includes data from the News Commentary
corpus. Overall, the dataset contains about 45 million words of training data per language from
Europarl, and 2 million words per language from News Commentary. This dataset is extremely large,
and we are using a 98-1-1 split for our train, development, and test sets. While building the model,
we intend to use a fraction of the dataset for implementation convenience (around 150,000 sentences
in our training set and 1,500 for both our dev and test set). Below are examples of the French and
English training data, respectively.

n direct du thtre Petit Champlain Au Bout du coeur et Si on voulait danser sur ma
usique

nce des douanes et du revenu du Canada ADRC ajoute une nouvelle voie au pont
rDetroit .
rep! n

me larticle
ante .
ire preuve de respect son gard demeurez dans le sentier et ne dplacez pas

il a t convaincu par les exposs de TPSGC dans la prsente affaire et quil a
poss et tant donn aussi la participation linite de CMG

t en matire plastique avec support tiss en matire

Preprocessing done on the data varied based on the needs of the model. In general, we used a small
fraction of the data in order to run our model in a practical amount of time. Additionally, the dataset
contained lots of odd symbols that were not part of the french or english vocabulary, so filtering
needed to be done based on that to ensure that the text we were attempting to translate was actually
part of the vocabulary. We stored our source and target vocabularies in numpy ndarrays, and used
these words as features. A citation of where we got our data is included in the References section
under label 4.



4 Methods

Model 1: For this model we used a sequence to sequence RNN with adam optimization, gradient
clipping, dropout and L2 regularization using TensorFlow. Much of this code follows Chansung
Park’s work in his "English-French Machine Language Translation in Tensorflow" project. Adam
optimization allows the model to train more efficiently. We used gradient clipping to solve the issue
of RNN’s vanishing and exploding gradient. The idea is that gradients cannot go outside of the range
of [-1,1], which makes training more efficient for models. We also employed dropout. Dropout
effectively greys out certain neurons during different phases of training. This strengthens the overall
model by lessening the likelihood of overfitting. Finally, we used L2 regularization which penalizes
large weights, in turn lessening the likelihood of having very large gradients, making the training more
efficient. The loss function used in this model was weighted softmax cross entropy loss function. An
equation for this function is illustated below along with an equation for L2 regularization, repectively:

M
Y = Yoclogpoe) - [IWIP
=Y Yoclogpoe)

c=1

Model 2: For our second model, we adapted our model from a sequential Encoder-Decoder LSTM
model, cited below ([6]). Since the source language and target language were different than what
this model was originally used for, we had to make several modifications, but retained aspects of
the general structure. We trained Keras’ inbuilt Tokenizer on our french and english vocabularies,
and then built our encoder using these tokenized values. We post-padded these sequences, and used
Keras’ inbuilt Embedding layer to embed our source vocabulary. We then incorporated an LSTM cell
that returned the last output in the output sequence, as well as a Time Distributed layer wrapper to our
output Dense layer with an activation function of ’softmax’. Regarding our optimizers, both Adam
and Nadam worked fairly well, but Nadam slightly outperformed Adam, with the key difference
between the two being that Nadam uses Nesterov momentum. We used categorical cross entropy
loss, with the formula as follows:

CCE = —% Zfi1 25:1 ly; € Celogp,, odel[yi € C]

Model 3: Our third model was adapted from a seq2seq model Luong et al.’s model with our data to
compare the benefits of using a sequential RNN with and without an attention mechanism. We had to
do a lot of data modification in order to get this model to work with our data. This included creating
our own vocabularies of the 17,000 most common words in the English and French language. This
model uses a bi-directional encoder and decoder to create embeddings for the English and French
vocabularies. This algorithm creates embeddings for both of the vocabularies of the source and the
target language. The encoder has access to the word embeddings and the source information. The
decoder also needs access to the source information, the word embeddings, and the target information.
We pass the last hidden state of the encoder to the decoder to allow the decoder access to the source
information. We measure the success of the translations using the Bleu score, as shown below where
c represents the actual number of word matches in order and r represents the total possible word
matches by order per input/output pair.

1 if c>r
BP:{ ell=rl) if e<r

Then,

N
BLEU=BP-exp (Z Wn logp,,) .

n=1

We also had another model with an attention mechanism. For shorter sentences, there is not as much
context and thus translations are easier. However, with longer sentences, there can be context that is
missed and therefore leads to worse translations. It does this by comparing the current word to be
decoded with each word of the input to create an attention vector. It then creates a context vector of
the weighted averages of the source words which is used to help decode each of the target words in
the hidden states, as shown below.



xp (score(hy, By
Qs = M [Attention weights] (1)
exp (score(hy, hy))

c = Z“"B‘ [Context vector] (2)
B

a; = f(er, hi) = tanh(We[ey; hy]) [Attention vector] 3)

S Experiments and Results

For most of the analysis of our model’s performance, we used BLEU scores as our overall metric,
the most common evaluation metric used for translation. A BLEU score of 1.0 indicates an identical
output to the reference translation, and a score of 0.0 indicates no n-gram overlap between the
reference translation and the hypothesis translation. BLEU scores take into account accuracy at
various ngrams, and interpolate these values to come up with an overall accuracy metric.

Model 1: In this model we chose the following hyperparamters: Epochs = 15, batch size = 256,
learning rate = .005, keep probability = .75. Originally, our data was severely overfitting our training
data. In order to circumvent this process, we introduced dropout, with the hyperparameter .75 for the
keep probability for any arbitrary neuron. For all of these parameters, we randomly sampled different
combinations and re-ran our training algorithm using these unique initializations. We made sure to
not make the steps uniform, in order to maximize the number of values we tried for each value. We
then chose the combination that gave us the highest rating for Bleu scores, averaging the 1-gram,
2-gram, 3-gram and 4-gram scores. A table below shows the outputs from these various models.
(Legend: E: epochs, B: batch size, L: learn rate, K: keep rate for dropout)

Bleu Score E: 12 E:15 E:17 E: 18
B: 128 B: 256 B: 300 B: 100

L:.001 0.17787087 022313563 029154665 0.19762191
K:.5 023666434 | 0.25335886 0.10203571 027677835

02965233 | 021258929 021513433 01184138
012952225 | 0.24622001 027281351 027253437
L:.005 023349156 035794476 015762698 0.16228479
K:.75 028472428 | 031624927 028033236 02125428
012129036 | 0.36666789 0.25587081 017731519

013116195 0.2634878 023242217 02419573

L:.0075 0.1491233 0.19451693 018064492 0.17340636
K4 010222342 | 0.09215892 0.14636021 020131316
010530668 | 0.19410488 0.12696011 013132434
015634513 | 0.19694084 029535391 005939385
L:.01 0.29154665 0.07777344 0.1114797 0.20616712
k.7 010203571 | 0.05914106 0.14949283 0.16942547
021513433 | 013511706 0.11609233 01115014
027281351 | 013150651 018699186 021282795

Model 2: For this model, we experimented with several different architectures, as well as various
forms of hyperparamater tuning. We also attempted to use a french stemmer and an english porter
stemmer, to remove morphological affixes from words and use only the word stem. We received
mixed results from our model with the stemmer, where it performed perfectly on certain sentences
and very poorly on others. We experimented with several optimizers, and based on our BLEU scores,
decided to use Nadam. Below is a table containing our BLEU scores with various optimizers.

Adam Adamax SGD Nadam

Average BLEU score | 0.11602325 0.03051175 0.0 0.1249395

For our Nadam optimizer, we experimented with several different ranges of learning rates. Below are
graphs that represent our models validation loss over 20 epochs for various learning rates.

model loss model loss model loss

— train 71— wain — train

7 test fest 6 test
\ 3

loss
loss
PO

1 — 1

00 25 50 75 100 125 150 175 an 25 500 75 00 1S BY WS 00 25 50 75 100 15 150 175
epoch epoch epoch

Learning Rate = 0.001 Learning Rate = 0.002 Learning Rate = 0.005

Model 3: For this model we had 128 dimensional hidden units. We used dropout (rate of 0.8) and
SGD with a learning rate of 1 as our method of optimization. After 8 epochs we begin to decay our



learning rate by half for the remaining 4 epochs (12 epochs total). Batch size of 256. We chose these
based on the paper of Luong et al. based on their model. After training this model on the original
dataset, cleaning the data and rerunning led to better results. We also trained it on different sizes of
data whose results are in the table below. The attention model used corpus of 130,000 examples.

Training corpus size 20,000 40,000 130,000 Attention model
Average Bleu score 0.14 0.18 0.26 0.48

6 Error Analysis

Model 1: In the below example, we can see that the two words that were dropped out were “threedi-
mensional” and “gridbased.” There are two explanations for this phenomena. The first is that these are
both very uncommon words and the model is not likely to understand the meaning behind these words.
The other reason is both of these words are most commonly used with hyphens or spaces in between.
However, given the strange nature in which they were written, the model would have a hard time
coming to this translation. Without their meanings, the sentiment was lost and replaced with a simple
“a.” This strange formatting of data was present in much of our dataset and contributed to much of
the error we saw. Original English: Their simplest form is the box model, but the most Eulerian
models are three-dimensional gridbased models. Actual Translation: Leur forme la plus simple est
le modele en boite, mais la plupart des modeles euleriens sont des modeles tridimensionnels bases
sur une grille. Model Translation: Leur forme la plus simple est le modele de boite, mais la plupart
des modeles sont des modeles.

Model 2: This model had trouble translating sentences with more than 5-6 tokens, and generally
performed better on short words or phrases. It seemed that the model was having trouble stringing
together larger sequences, but was able to translate words in isolation. One example where the model
was unable to retain sequential knowledge is as follows: Source: Merci, Papa!, Target translation:
Thanks, Dad!, Hypothesis translation: thanks thanks thanks thanks thanks. Here, we see that the
model is able to translate the word "Merci’ corectly, but fails to recognize the sequential information
necessary to create a coherent phrase, even though the source text is short. This likely has to due with
the fact that there is only one sequential layer in this model.

Model 3: This model mostly failed when there were words that were not in the dictionary (proper
nouns). For example, one sentence read "M Sherb ntait pas partie la plainte qui avait ..." and it was
translated to "Mr <unk> was not part of the complaint ...". Since this was trained with the attention
model, most of the other words were translated correctly and even thought it was a long sentence, it
had a Bleu score of approximately 0.5.

7 Conclusion/Future Work

Overall, our first model was the highest performing on average due to the combination of using an
Adam optimizer and L2 normalization. However, the highest BLEU score came from model 3 which
used the attention mechanism. Given the long sentences in the corpus, the attention mechanism
allowed the model to keep track of the context within the sentence to choose the best words for the
translation. Since this model used SGD normally, we concluded that this is the reason why it did
not perform as well as model 1 and that Adam was a preferable optimizer. If we had more time, we
would have loved to explore translating other corpus’ on the same models to see if it was a limitation
of the data. Further, we would have loved to test all of the different elements of all the models to find
some combination that was most effective at translating languages.

8 Contributions

Project Proposal: Gita, Jackson, Faraz
Project Milestone: Gita, Jackson, Faraz
Final Project: Gita, Jackson, Faraz
Model 1: Faraz

Model 2: Gita

Model 3/4: Jackson



Project Poster: Gita, Jackson, Faraz
Project Presentation: Gita, Jackson

References

[1] Chansung, Park. Seq2Seq model in TensorFlow, https://towardsdatascience.com/seq2seq-model-in-
tensorflow-ec0c557e560f.

[2] Sutskever, Ilya, Vinyals, Oriol. & Quoc V. Le (2014) Sequence to Sequence Learning with Neural Networks
System. https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf.

[3] Gehring, Jonas & Michael Auli (2017) A novel approach to neural machine translation.
https://code.fb.com/ml-applications/a-novel-approach-to-neural-machine-translation/.

[4] EMNLP 2011 SIXTH WORKSHOP ON STATISTICAL MACHINE TRANSLATION (2011).
http://statmt.org/wmtll/translation-task.html#download

[5] Effective approaches to attention-based neural machine translation, Minh-Thang Luong, Hieu Pham, and
Christopher D Manning. EMNLP, 2015.

[6] https://github.com/vibhor98/Neural-Machine-Translation-using-Keras
[7] https://github.com/tensorflow/nmt



